This product includes one (1) MPEG-4 decoder license. To purchase for use in surveillance systems may also be beneficial, for developing shell scripts and applications. Previous experience in networking will be of use when using this product. Some knowledge of UNIX or Linux-based systems may also be beneficial, for developing shell scripts and applications. Later versions of this document will be posted on the website.

**Safety Notices Used In This Manual**

**Caution!** Indicates potential hazard that can damage the product. **Important!** Indicates hazard that can seriously impair operation. Do not proceed beyond any of the above notices until you have fully understood the implications.

**Intellectual Property Rights**

Axis AB has intellectual property rights relating to technology in the product described in this document. In particular, and without limitation, these intellectual property rights may include one or more of the patents listed at http://www.axis.com/patent.htm and one or more additional patents or pending patent applications in the US and other countries.

This product contains third-party software. See the menu item “About” in the product user interface for more information. This product contains source code copyright Apple Computer, Inc., under the terms of Apple Public Source License 2.0 (see http://www.opensource.apple.com/apsl/). The source code is available at: http://developer.apple.com/darwin/projects/bonjour/.

**Legal Considerations**

Video and audio surveillance can be prohibited by laws that vary from country to country. Check the laws in your local region before using this product for surveillance purposes. This product includes one (1) MPEG-4 decoder license. To purchase further licenses, contact your reseller.

**Electromagnetic Compatibility (EMC)**

This equipment generates, uses and can radiate radio frequency energy; if not installed and used in accordance with instructions, may cause harmful interference to radio communications. There is no guarantee against interference in particular installations. If this equipment causes harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to correct the interference by one or more of the following measures: Re-orient or relocate the receiving antenna. Increase the separation between the equipment and receiver. Connect the equipment to an outlet on a different circuit to the receiver. Consult your dealer or an experienced radio/TV technician for help. Shielded (STP) network cables must be used with this unit to ensure compliance with EMC standards.

**USA**

This equipment has been tested and found to comply with the limits for a Class B computing device pursuant to Subpart B of Part 15 of FCC rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference, in which case the user at his/her own expense will be required to take whatever measures may be required to correct the interference.

**Canada**

This Class B digital apparatus complies with Canadian ICES-003.

**Europe**

This digital equipment fulfills the requirements for radiated emission according to limit B of EN55022, and the requirements for immunity according to EN55024 residential, commercial, and light industry.

**Japan**

This is a class B product based on the standard of the Voluntary Control Council for Interference from Information Technology Equipment (VCCI). If used near a radio or television receiver, it may cause radio frequency interference. Install and use the equipment according to the instruction manual.

**Australia**

This electronic device meets the requirements of the Radiocommunications (Electromagnetic Compatibility) Standard AS/NZS CISPR22:2002.

**Equipment Modifications**

This equipment must be installed and used in strict accordance with the instructions in the user documentation. This equipment contains no user-serviceable components. Unauthorized equipment changes or modifications will invalidate all applicable regulatory certifications and approvals.

**Liability**

Every care has been taken in the preparation of this manual. Please inform your local Axis office of inaccuracies or omissions. Axis Communications AB cannot be held responsible for technical or typographical errors and reserves the right to make changes to the product and manuals without prior notice. Axis Communications AB makes no warranty of any kind with regard to the material contained within this document, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Axis Communications AB shall not be liable nor responsible for incidental or consequential damages in connection with the furnishing, performance or use of this material.

**Trademark Acknowledgments**

Apple, Boa, Bonjour, Ethernet, Internet Explorer, Linux, Microsoft, Firefox, Netscape Navigator, OS/2, Real, QuickTime, UNIX, Windows, WWW are registered trademarks of the respective holders. Java and Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems Inc. in the United States and other countries. Axis Communications AB is independent of Sun Microsystems Inc. UPnP™ is a certification mark of the UPnP™ Implementers Corporation.

**Support**

Should you require technical assistance, contact your Axis reseller. If your questions cannot be answered immediately, your reseller will forward your queries to appropriate channels to ensure rapid response. If you are connected to the Internet, you can:

- download user documentation and firmware updates
- find answers in FAQ database. Search by product, category, or phrases
- report problems to Axis by logging in to your private support area
- visit Axis Support at www.axis.com/techsup/

**Safety Notice – Battery Replacement**

The AXIS 216FD/FD-V/MFD-V uses a 3.0V CR2032 Lithium battery as the power supply for its internal real-time clock (RTC). Under normal conditions this battery lasts for a minimum of 5 years. Low battery power affects the operation of the RTC, causing it to reset at every power-up. A log message appears when the battery needs replacing. The battery should not be replaced unless required! If the battery does not replace, please observe the following:

- Danger of Explosion if battery is incorrectly replaced
- Replace with same or equivalent battery, as recommended by the manufacturer

Dispose of used batteries according to the manufacturer’s instructions.

**RoHS**

This product complies with both the European RoHS directive, 2002/95/EC, and the Chinese RoHS regulations, ACPEIP.

**WEEE Directive**

The European Union has enacted a Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE Directive). This directive is applicable in the European Union member states.

The WEEE marking on this product (see right) or its documentation indicates that the product must not be disposed of together with household waste. To prevent possible harm to human health and/or the environment, the product must be disposed of in an approved and environmentally safe recycling process. For further information on how to dispose of this product correctly, contact the product supplier, or the local authority responsible for waste disposal in your area.

Business users should contact the product supplier for information on how to dispose of this product correctly. This product should not be mixed with other commercial waste.
# Contents

- Product overview .......................................................... 5
- Accessing the Camera ..................................................... 8
  - Access from a browser .................................................. 8
  - Setting the root password ............................................. 9
  - Setting the root password over a secure connection .......... 10
  - Access from the internet ............................................. 11
- Video Streams ................................................................. 14
  - How to stream MPEG-4 .................................................. 14
  - MPEG-4 clients ......................................................... 15
  - Motion JPEG ............................................................ 15
  - Alternative methods of accessing the video stream ......... 15
- Configuration - Video & Image settings. .............................. 17
  - Image ........................................................................... 17
  - Overlay/Mask ............................................................. 18
  - Advanced ................................................................. 19
- Audio ............................................................................... 21
- Live View Config ............................................................... 24
  - Layout .......................................................................... 24
  - HTML Examples .......................................................... 28
  - External Video ............................................................ 28
  - Sequence Mode ........................................................... 28
- Event Configuration ............................................................ 29
  - Event Servers ............................................................. 29
  - Event Types ............................................................... 29
  - Camera tampering ....................................................... 32
  - Motion Detection ......................................................... 33
  - Port Status ................................................................. 34
- System Options .................................................................. 35
  - Security ..................................................................... 35
  - Date & Time .................................................................. 38
  - Network ..................................................................... 38
  - Ports & Devices ........................................................... 43
  - LED Settings ............................................................... 43
  - Maintenance ............................................................... 44
  - Support ........................................................................ 44
  - Advanced ..................................................................... 45
  - About .......................................................................... 46
  - Resetting to the Factory Default Settings ................. 46
- The I/O Terminal Connector .................................................... 47
  - Pinout and Interface ....................................................... 47
  - Terminal Connector ....................................................... 48
Product overview

This manual applies to the AXIS 216FD, AXIS 216FD-V, AXIS 216MFD, and AXIS 216MFD-V Fixed Dome Network cameras. The information provided here applies to all four models, except where otherwise indicated.

Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXIS 216FD</td>
<td>Tamper-resistant Fixed Dome Network Camera</td>
</tr>
<tr>
<td>AXIS 216FD-V</td>
<td>Vandal-resistant Fixed Dome Network Camera</td>
</tr>
<tr>
<td>AXIS 216MFD</td>
<td>Megapixel Tamper-resistant Fixed Dome Network Camera</td>
</tr>
<tr>
<td>AXIS 216MFD-V</td>
<td>Megapixel Vandal-resistant Fixed Dome Network Camera</td>
</tr>
</tbody>
</table>

Key features

- Discreet and compact design, effective against tampering/vandalization
- Megapixel resolution in AXIS 216MFD/AXIS 216MFD-V. More than three times better resolution compared to a high-resolution analog camera
- Superior image quality with progressive scan and 30 frames per second in VGA
- Simultaneous Motion JPEG and MPEG-4 for optimized quality and bandwidth
- Two-way audio support including built-in microphone
- Power over Ethernet for reduced cabling and consolidated power
- Multi-window motion detection with alarm image buffering
- Multi-level password protection, IP-address filtering and HTTPS encryption for network security.
Network camera overview

**Microphone** - built-in microphone. This can be disabled by inserting a plug in the 'Audio in' connector.

**Power Connector** - for connection of the PS-H power adapter (included).

**I/O Connector** - the I/O terminal connector provides the physical interface to one transistor output, one digital input and an auxiliary connection point for DC power. For more information, see *The I/O Terminal Connector*, on page 47.

**Network Connector** - The camera connects to the network via a standard network connector. Supporting NWAY, the camera detects the speed of the local network segment (10BaseT/100BaseTX Ethernet). Supporting PoE (Power over Ethernet), the camera can be powered directly from the network cabling.
Audio Out - audio output (line level), which can be connected to a public address (PA) system or an active speaker with a built-in amplifier. A pair of headphones can also be attached. A stereo connector must be used for the audio out.

Audio In - a 3.5 mm input for a mono microphone, or for a line-in mono signal (a stereo signal from line-in uses the left channel).

Serial Number Label - the serial number may be required during installation.

Control Button - press this button to install the camera using the AXIS Internet Dynamic DNS Service, or to restore the factory default settings, as described in Resetting to the Factory Default Settings, on page 46.

Note: AXIS Internet Dynamic DNS Service is free service from Axis that allows you to quickly and simply install your camera. This requires an Internet connection with no HTTP proxy. See www.axiscam.net for more information.

LED indicators

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>Green</td>
<td>Steady for connection to 100 Mbit/s network. Flashes for network activity.</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Steady for connection to 10 Mbit/s network. Flashes for network activity.</td>
</tr>
<tr>
<td></td>
<td>Unlit</td>
<td>No connection.</td>
</tr>
<tr>
<td>Status</td>
<td>Green</td>
<td>Shows steady green for normal operation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: The Status LED can be configured to be unlit during normal operation,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or to flash only when the camera is accessed. See the online help files for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>more information. Go to Setup &gt; System Options &gt; LED settings</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Steady during startup, reset to factory default or when restoring settings.</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Slow flash for failed upgrade.</td>
</tr>
<tr>
<td>Power</td>
<td>Green</td>
<td>Normal operation.</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Flashes green/amber during firmware upgrade.</td>
</tr>
</tbody>
</table>
Accessing the Camera

You need to install the network camera before you can access it. Refer to the installation guide supplied with your product.

The network camera can be used with most standard operating systems and browsers. The recommended browser is Microsoft Internet Explorer with Windows, Safari with Macintosh and Firefox with other operating systems. See Minimum web browsing requirements, on page 55.

Notes:
- To view streaming video in Microsoft Internet Explorer, set your browser to allow ActiveX controls and install AXIS Media Control (AMC) on your workstation.
- QuickTimeTM and Real PlayerTM are also supported for viewing streaming MPEG-4 video and audio.
- If your workstation restricts the use of additional software components, the camera can be configured to use a Java applet for viewing Motion JPEG.
- The network camera includes one (1) decoder license for viewing MPEG-4 video streams. This is automatically installed with AMC. The administrator can disable the installation of the MPEG-4 decoder, to prevent installation of unlicensed copies.

Access from a browser

1. Start a browser (Internet Explorer, Firefox).
2. Enter the IP address or host name of the camera in the Location/Address field of your browser.
   To access the camera from a Macintosh computer (Mac OSX), click on the Bonjour tab and select the AXIS 216FD/AXIS 216MFD from the drop-down list.
3. If this is the first time you are accessing the camera, see Access from the internet, on page 11. Otherwise enter your user name and password, set by the administrator.
4. The camera’s Live View page appears in your browser. Note that both AXIS 216FD and AXIS 216FD-V models display in the browser as AXIS 216FD, and both AXIS 216MFD and AXIS 216MFD-V display as AXIS 216MFD.

**Note:** The layout of the Live View page may have been customized to specific requirements. Consequently, some of the examples and functions featured here may differ from those displayed on your own Live View page.

**Setting the root password**

1. When accessing the camera for the first time, the ‘Configure Root Password’ dialog appears.

2. Enter a password and re-enter to confirm. Click OK.

3. The ‘Enter Network Password’ dialog appears. Enter the User name: root

**Note:** The default administrator user name ‘root’ is permanent and cannot be deleted.
4. Enter the password (which you set in step 2), and click OK. If the password is lost, the camera must be reset to the factory default settings. See page 46.

**Note:** While setting the root password, click Yes to install the AXIS Media Control (AMC), if you are prompted to. You will need administrator rights on the computer to do this.

### Setting the root password over a secure connection

To gain access to the product, the password for the default administrator user root must be set. This is done in the ‘Configure Root Password’ dialog, which is displayed when the network camera is accessed for the first time.

To prevent network eavesdropping when setting the root password, this can be done via an encrypted HTTPS connection, which requires an HTTPS certificate (see note below).

To set the password via a standard HTTP connection, enter it directly in the first dialog shown below.

To set the password via an encrypted HTTPS connection, follow these steps:

1. Click the Create self-signed certificate button.
2. Provide the requested information and click OK. The certificate is created and the password can now be set securely. All traffic to and from the network camera is encrypted from this point on.
3. Enter a password and then re-enter it to confirm the spelling. Click OK. The password has now been configured.

**Note:** HTTPS (Hypertext Transfer Protocol over SSL) is a protocol used to encrypt the traffic between web browsers and servers. The HTTPS certificate controls the encrypted exchange of information. The default administrator user root cannot be deleted.

If the password for root is lost or forgotten, the network camera must be reset to the factory default settings. See page 46.
Access from the internet
Once connected, the camera is accessible on your local network (LAN). To access the camera from the Internet you must configure your broadband router to allow incoming data traffic to the camera. To do this, enable the NAT-traversal feature, which will attempt to automatically configure the router to allow access to the camera. This is enabled from Setup > System Options > Network > TCP/IP Advanced.

For more information, please see NAT traversal (port mapping) for IPv4, on page 40. See also the AXIS Internet Dynamic DNS Service at www.axiscam.net For Technical notes on this and other topics, visit the Axis Support web at www.axis.com/techsup

Adjusting the image

1. Open the Live View page in the web interface and make the following adjustments on the camera.
2. Loosen the locking screw and tilt adjustment screws.
3. Turn the lens to the desired position.
4. Gently tighten the locking screw and tilt adjustment screws to secure the camera’s position.
5. Turn the image balance ring to set the horizontal position.
6. Open the Focus Adjustment page in the web interface under Basic Configuration > Focus and follow the on-screen instructions. Use the image window to adjust the focus and zoom.
   To set the focus and zoom, loosen the zoom and focus pullers counterclockwise and rotate the rings.
   Lock the focus and zoom pullers in position by rotating the screws clockwise.

Note: Due to the dome's tendency to refract light, the image might appear slightly out of focus once the dome has been mounted. To compensate, focus on an object slightly closer than the intended area.
The Live View page

How you customize the Live View page determines which buttons are visible. Not all the buttons described below will show up unless configured to do so.

View size buttons are available for Motion JPEG in AXIS 216MFD/AXIS 216MFD-V. Click the button on the left to scale image to an 800 pixel width; click the button on the right to return the image to the configured resolution.

The Video Format drop-down list allows you to temporarily change the video format on the Live View page.

The Output buttons control the output directly from the Live View page. These buttons are configured under Setup > Live View Config > Layout.

Pulse - click this button to activate the output for a defined period of time - switching a light on for 20 seconds.

Active/Inactive - click these buttons to manually start and stop a connected device, such as switching a light on/off.

The Action buttons can trigger an event directly from the Live View page. These are configured under Setup > Live View Config > Layout.

The Snapshot button saves a snapshot of the video image currently on display. Right-click on the video image to save it in JPEG format on your computer. This button is primarily intended for use when the AMC viewer toolbar is not available.

The AMC viewer toolbar (AXIS Media Control) is available in Microsoft Internet Explorer only. It displays the following buttons:

- The Play/Stop button starts and stops the live video stream.

- The Snapshot button saves a snapshot of the video image on display. The Snapshot function and the target directory for saving snapshots can be configured from the AMC Control Applet in the Windows Control Panel.

- Click the View Full Screen button to make the video image fill the entire screen area. Press Esc (Escape) on the computer keyboard to exit full screen, or right-click and select the option to exit.

- Click the Record button to start recording.
AMC audio controls

Audio controls monitor the client computer’s speaker output. These controls are only available when audio is enabled.

- Click the **Speaker** and **Microphone** buttons to switch the sound off and on for the speaker and microphone, respectively.

- Use the sliders to control the volume on the speaker and microphone. The volume can be set between 0 and 100.

  The buffer slider controls the size of the buffer for audio. A higher level reduces audio break-up, but may introduce a noticeable lag in audio transmission. There are four settings - min, low, high and max.

- When using the **Half-duplex** mode, this button toggles, allowing you to speak and listen. The first icon indicates that you can talk and the speaker attached to the camera will play your voice. The second indicates that you will hear audio from the camera, but no audio is sent to any web client.

- When in **Simplex** talk mode, the icon toggles allowing you to speak, and is dimmed when you do not want other clients to receive any audio.
Video Streams

The network camera provides several image and video stream formats. Your requirements and the properties of your network will determine the type you use.

The Live View page in the network camera provides access to MPEG-4 and Motion JPEG video streams, and to single JPEG images. Other applications and clients can also access these video streams/images directly, without going via the Live View page.

How to stream MPEG-4

This video compression standard makes good use of bandwidth, and can provide high quality video streams at less than 1 Mbit/s. Note that the image settings of the MPEG-4 stream are the same for all clients.

Deciding which combination of protocols and methods to use depends on your viewing requirements, and on the properties of your network. The available options in AMC are:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast RTP</td>
<td>This unicast method (RTP over UDP) should be your first consideration for live unicast video, especially when it is important to always have an up-to-date video stream, even if some images are dropped. Unicasting is used for video-on-demand broadcasting, so that there is no video traffic on the network until a client connects and requests the stream. Note that there are a maximum of 20 simultaneous unicast connections.</td>
</tr>
<tr>
<td>RTP over RTSP</td>
<td>This unicast method (RTP tunneled over RTSP) is useful as it is relatively simple to configure firewalls to allow RTSP traffic.</td>
</tr>
<tr>
<td>RTP over RTSP over HTTP</td>
<td>This unicast method can be used to traverse firewalls. Firewalls are commonly configured to allow the HTTP protocol, thus allowing RTP to be tunneled.</td>
</tr>
<tr>
<td>Multicast RTP</td>
<td>This method (RTP over UDP) should be used for live multicast video. The video stream is always up-to-date, even if some images are dropped. Multicasting provides the most efficient usage of bandwidth when there are large numbers of clients viewing simultaneously. A multicast broadcast cannot however, pass a network router unless the router is configured to allow this. It is not possible to multicast over the Internet, for example. Note also that all multicast viewers count as one unicast viewer in the maximum total of 10 simultaneous connections.</td>
</tr>
</tbody>
</table>

AMC negotiates with the camera to determine the transport protocol to use in the order listed above. This order can be changed and the options disabled, to suit specific requirements.

Important!

MPEG-4 is licensed technology. The network camera includes one viewing client license. Installing additional unlicensed copies of the viewing client is prohibited. To purchase additional licenses, contact your Axis reseller.
MPEG-4 clients

**AXIS Media Control (AMC)**

The recommended method of accessing live video from the network camera is to use the AXIS Media Control (AMC) in Microsoft Internet Explorer in Windows.

The AMC control panel can be used to configure various video and audio settings. Please see the readme file included in the tool for more information.

The AMC control panel is automatically installed on first use, after which it can be configured. Open the AMC Control Panel from:

- Windows Control Panel (from the Start menu)
- Alternatively, right-click the video image in Internet Explorer and click Settings to access the AMC window.

**Motion JPEG**

This format uses standard JPEG still images for the video stream. These images are then displayed and updated at a rate sufficient to create a stream that shows constantly updated motion.

The Motion JPEG stream uses considerable amounts of bandwidth, but provides excellent image quality and access to every image contained in the stream. The recommended method of accessing Motion JPEG live video from the network camera is to use the AXIS Media Control (AMC) in Microsoft Internet Explorer in Windows.

Note also that multiple clients accessing Motion JPEG streams can use different image settings.

**Alternative methods of accessing the video stream**

Video/images from the network camera can also be accessed in the following ways:

- Motion JPEG server push (if supported by the client, Firefox, for example). This option maintains an open HTTP connection to the browser and sends data as and when required, for as long as required.
- Still JPEG images in a browser. Enter the path - http://<ip>/axis-cgi/jpg/image.cgi?resolution=320x240
- Windows Media Player. This requires AMC and the MPEG-4 viewing client to be installed. The paths that can be used are listed below in the order of preference:
• Unicast via RTP: axrtpu://<ip>/mpeg4/media.amp
• Unicast via RTSP: axrtsp://<ip>/mpeg4/media.amp
• Unicast via RTSP, tunneled via HTTP: axrtsphttp://<ip>/mpeg4/media.amp
• Multicast: axrtpm://<ip>/mpeg4/media.amp

• QuickTime™ & Real Player™. To access the video stream from QuickTime™ or Real Player™ the following paths can be used:
  • rtsp://<ip>/mpeg4/media.amp
  • rtsp://<ip>/mpeg4/media.3gp

Notes:
• The network camera supports QuickTime 6.5.1 (or later) and Real Player 10.5 (or later)
• QuickTime adds latency to the video and audio stream (up to 3 seconds)
• It may be possible to use other players to view the MPEG-4 stream using the paths above, although Axis does not guarantee this

<iip> = IP address
Configuration - Video & Image settings

This section describes how to configure the camera, and is intended for product Administrators, who have unrestricted access to all the Setup tools; and Operators, who have access to the settings for Video & Image, Audio, Live View Config, and Event Configuration.

You can configure the camera by clicking Setup in the top right-hand corner of the Live View page. Click on this page to access the online help that explains the setup tools.

Image

Image Appearance

Use these settings to change the image as required. The image can be rotated, the image resolution and compression can be adjusted, the image can be mirrored, and the white balance can be changed.

For AXIS 216MFD only - Resolution includes widescreen 16:9, partial (which stands for partial scan where an image is taken from the center region of the sensor for optimal frame rate in Motion JPEG/MPEG-4); and full speed, (which is partial scan that has been scaled down to give full frame rate in Motion JPEG). Please see the online help for further information on these settings.
Text Overlay Settings

Use these settings to include an text, date, and time as overlay. Click 🎯 for information on available options.

Video Stream

Define the maximum video stream time per session in seconds, minutes or hours. When the set time has expired, a new stream can be started by refreshing the page in the browser. For unlimited video stream time, select the Unlimited radio button. Note that the maximum video stream time does not apply to clients connecting via multicast.

The frame rate allowed to each viewer can also be limited, to avoid bandwidth problems on the network. To allow the highest available frame rate, select the Unlimited radio button.

Test

For a preview of the image before saving, click Test. When satisfied with the settings, click Save. Please note that the preview image will be in Motion JPEG format, even though the settings are valid both for Motion JPEG and MPEG-4.

Overlay/Mask

The following options are available for overlays and masks:

- Uploaded image as overlay
- Configurable areas as privacy mask

Uploaded image as overlay is a text and/or a static image superimposed over the video image, for extra information.
Configurable areas as privacy mask are configurable areas of solid color that can be used to block out certain parts of the video image.

**Note:** When setting privacy masks in AXIS 216FD/AXIS 216MFD-V make sure the camera is set for full resolution to ensure full coverage of sensitive area.

## Advanced

### Camera Settings

The Camera Settings options allow for fine-tuning the video image.

- **Color level, Brightness and Sharpness** - find the level that best suits your image needs by testing.
- **Exposure control** - this setting is used to adapt to the amount/type of light being used. Allow slow shutter can be enabled/disabled when the exposure control is set to Automatic.
- **Exposure area** - this setting determines which part of the image will be used to calculate the exposure.
- **DC-Iris** - is a varifocal lens which automatically regulates the amount of light entering the camera.

Please see the online help for further information on these settings.

### Low Light Behavior

Low light conditions can reduce image quality and increase bandwidth usage. The Low Light Behavior settings define the balance between image quality and frame rate. During low light conditions, experiment with the settings Exposure priority, Max exposure time, and Max gain until you achieve an acceptable image quality at the required frame rate.

**Exposure priority** defines the balance between image quality and the frame rate. Higher image quality may reduce frame rate and increase motion blur. A prioritized frame rate may increase image noise.

Increasing the **Max exposure time** increases the quality of the image, but decreases the frame rate. There may also be increased motion blur.

**Max gain**, measured in decibels (dB), describes the amount of amplification applied to the visual information in the image. A high level of amplification will provide viewable images in very low light, but will increase image noise.

To prioritize image quality, choose Prioritize image quality from the Exposure priority drop-down box, and lower the **Max gain**. If this does not produce the desired results, increase the **Max exposure time**.
To instead prioritize frame rate, choose **Prioritize frame rate** from the **Exposure priority** drop-down box and reduce the **Max exposure time**. The image darkens considerably, but the frame rate is maintained. To increase image brightness increase **Max gain**, but this increases image noise.

Please refer to the online help for more information 📚.

**MPEG-4**

**GOV Settings**

The GOV structure describes the composition of the MPEG-4 video stream. Setting the GOV-length to a high value saves on bandwidth. The **Cyclic refresh** parameter gives a smoother bit rate and can be useful if bandwidth is limited.

**Bit Rate Control**

Limiting the maximum bit rate helps control the bandwidth used by the MPEG-4 video stream. Leaving the Maximum bit rate as unlimited maintains image quality, but increases bandwidth usage when there is more activity in the image. Limiting the bit rate to a defined value prevents excessive bandwidth usage, but images are lost when the limit is exceeded.

Note that a maximum bit rate can be used for both variable and constant bit rates.

The bit rate type can be set as **Variable Bit Rate** (VBR) or **Constant Bit Rate** (CBR). VBR adjusts the bit rate according to the image complexity, using up bandwidth for increased activity in the image, and less for lower activity in the monitored area.

CBR allows you to set a fixed **Target bit rate** that consumes a predictable amount of bandwidth.

As the bit rate would usually need to increase for increased image activity, but in this case cannot, the frame rate and image quality are affected negatively. To partly compensate for this, it is possible to prioritize either the frame rate or the image quality whenever the bit rate needs to be increased. Not setting a priority means the frame rate and image quality are equally affected.

**MJPEG**

Sometimes the image size is large due to low light or complex scenery. Adjusting the maximum frame size helps to control the bandwidth and storage used by the MJPEG video stream in these situations. Defining the frame size as **Unlimited** provides consistently good image quality at the expense of increased bandwidth and storage usage during low light. Limiting the frame size optimizes bandwidth and storage usage, but gives poor image quality. To prevent increased bandwidth and storage usage, the maximum frame size should be set to an optimal value.
Audio

The network camera can transmit audio to other clients using either the built-in microphone or a connected external microphone and can play audio received from other clients via a connected speaker.

Note: The speaker connected to the audio output must have a built-in amplifier - PC speakers for example.

Transmitting audio and video across the network using the network cameras.
Audio Settings
This section describes how to configure the basic audio settings for the network camera - for example, setting the communication mode and adjusting the sound levels in the microphone and speaker connected to the camera.

Enable Audio
Check this box to enable audio.

Audio Channels
Audio mode - The Half duplex mode transmits and receives audio in both directions, but only in one direction at a time. To speak, press and hold the button (check that the microphone is not muted). To receive audio, release the button.

Note: The push-to-talk button is configured from AMC (see AXIS Media Control (AMC), on page 15). It is possible to configure the push-to-talk button so that it toggles between the speaking and listening modes.

When selecting the Simplex - Network Camera speaker only mode, the speaker connected to the camera plays audio, but no audio is transmitted from the camera to other web clients. This could be used to provide spoken instructions to a person seen in the camera. This mode requires you to use the push-to-talk button.

The Simplex - Network Camera microphone only mode transmits audio only from the network camera to web clients. It does not receive audio from other web clients. This can be used in remote monitoring, and web attractions, to provide live audio and video, of a monitored situation.
When using Half-duplex, the **Send the sound from the active client to all other clients** option transmits the audio signal from the client that is talking to other clients.

### Audio Input

Audio from an external microphone or a line source can be connected to the Audio in the connector of the network camera. The audio source must be set to **Microphone** or **Line** depending on the connected device.

**Note:** To prevent unauthorized listening, the internal microphone can be disabled by inserting a plug in the Audio in connector.

The **Enable microphone power** option provides DC power for an external microphone. If using a small electret condenser microphone such as a clip-on microphone or a PC microphone, enable this option.

**Note:** To use a high impedance dynamic microphone, do not enable DC power. DC power will not harm the microphone; if you are uncertain, try switching it off and on. The default value is DC power enabled. To use a professional microphone requiring 48V phantom power, you need an external power supply and a balanced-unbalanced converter (audio transformer) in between.

If the sound input is too low or too high, adjust the **input gain** for the microphone attached to the network camera.

Select the desired audio **Encoding** format, AAC, G711, G726.

Depending on the selected encoding, set the desired audio quality (Bit rate). The settings affect the available bandwidth and the required audio quality.

The network camera can be set to trigger an event if the incoming sound level rises above, falls below, or passes the set value. The **Alarm level** is set between 0–100%.

### Audio Output

If the sound from the speaker is too low or too high, adjust the **output gain** for the active speaker attached to the network camera.

When satisfied with the settings, click **Save**, or click **Reset** to revert to previously saved settings.

**Note:** To receive synchronized video in MPEG-4 and audio, it is recommended that the time settings in the camera and client PC are synchronized with an NTP Server. This is enabled in the camera under **System Options** > **Date & Time**. Please refer to the help pages for more information.
Live View Config

Layout
These are the tools that determine the layout of the Live View page. The layout can be set in two ways:

- **Use Axis look** - the layout is unchanged.
- **Use custom settings** - modify the Axis look with your own colors, and images. Click the Configure button to modify the Axis look in the Custom Settings window that appears. Also see *The Custom Settings window*, on page 25.

The other settings on this page determine other features to include in the layout, such as the action, and output buttons, default video stream and viewer. See page 25 for more information.
The Custom Settings window

Click the Configure button in the Live View Layout page to access the Custom Settings window. Here you can customize the appearance of the default Live View page to suit your requirements, or you can upload and use your own home page. To upload your own files, click the Upload/Remove button and see the description below.

Upload own web Files

Upload your web files, and background pictures to the camera first in order to be able to select them in the Custom Settings setup dialog.

1. Click the Upload/Remove button.
2. Enter the path to the file or click the Browse button to locate the path.
3. Select the user level for the uploaded file to control the pages that can be viewed by specific users.
4. When the path is shown correctly in the text field, click the Upload button.

All uploaded files are shown in the list in the lower section of the page. To remove a file, check the box provided next to it and then click the Remove button.

Uncheck the Show setup link box to remove the setup link from the product’s Home Page. Then, to access the Setup tools enter the full setup address into the address/URL field of a browser.

Click Use own home page to use a previously uploaded web page as the default page, check the box, select the page from the drop-down list and click OK.

Default Video Format

Select the default video format to use on the Live View page. Checking Show video format selection box displays a drop-down list on the Live View page allowing you to temporarily change the format.

Note: When using MPEG-4 as the video format, the default viewer is AXIS Media Control with Internet Explorer. It is also possible to view Motion JPEG when MPEG-4 is chosen as default and vice versa.
Default Viewer

From the drop-down lists, select the default method for viewing video images for your browser. The camera attempts to show the video images in the selected video format and viewer. If this is not possible, the camera overrides the settings and selects the best available combination.

<table>
<thead>
<tr>
<th>Browser</th>
<th>Viewer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>AMC</td>
<td>Recommended viewer in Windows Internet Explorer (MPEG-4/Motion JPEG).</td>
</tr>
<tr>
<td>Internet</td>
<td>QuickTime</td>
<td>MPEG-4 only.</td>
</tr>
<tr>
<td>Explorer</td>
<td>Java applet</td>
<td>A slower imaging alternative to AMC. Requires one of the following installed on the client:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• JVM (J2SE) 1.4.2 or higher</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• JRE (J2SE) 5.0 or higher</td>
</tr>
<tr>
<td>Other</td>
<td>Server Push</td>
<td>Recommended viewer for other browsers (Motion JPEG).</td>
</tr>
<tr>
<td>browsers</td>
<td>QuickTime</td>
<td>MPEG-4 only.</td>
</tr>
<tr>
<td></td>
<td>Java applet</td>
<td>A slower imaging alternative to Server Push (Motion JPEG only).</td>
</tr>
<tr>
<td></td>
<td>Still image</td>
<td>Displays still images only. Hit the Refresh button in your browser to view a new image.</td>
</tr>
</tbody>
</table>

Check the **Show viewer toolbar** box to display the AXIS Media Control (AMC) or the QuickTime viewer toolbar under the video image in your browser.

Viewer Settings

The administrator can disable the installation of the MPEG-4 decoder included with AMC. This is used to prevent the installation of unlicensed copies. Further decoder licenses can be purchased from your Axis dealer.

Action Buttons

The **Show manual trigger button** can be used to manually trigger and stop an event from the Live View page. See *Event Configuration*, on page 29.

Check the **Show snapshot button** to save a snapshot from the video stream. This button is mainly intended for use with browsers other than Internet Explorer, or when not using AXIS Media Control (AMC) to view the video stream. AMC for Internet Explorer provides its own snapshot button.

User Defined Links

User defined links can be CGI links or web links. Once configured, the link(s) appear on the Live View page.

To set up a web link, select the Use as web link radio button, enter a descriptive name and enter the URL in the provided field. Click Save and the link appears in the Live View page.
User defined CGI links can be used to issue HTTP API requests, such as PTZ commands.

**Example:**

1. Check Show Custom Link 1.
2. Enter a descriptive name, such as CAM START.
3. Select the Use as cgi link radio button and enter the cgi link in the field:
   
   http://192.168.0.125/axis-cgi/com/ptz.cgi?continuouspantiltmove=30,-30

4. Check Show Custom Link 2.
5. Enter a descriptive name, such as CAM STOP.
6. Select the Use as cgi link radio button and enter the cgi link in the field:
   
   http://192.168.0.125/axis-cgi/com/ptz.cgi?continuouspantiltmove=0,0

These links appear in the web interface and can be used to control the Axis network camera.

For more information on the Axis HTTP API, see the Support/Developer pages on the Axis Web site at http://www.axis.com

Please use the online help files for more information.

**Output Buttons**

The output buttons are used to manually activate the output from the Live View page, for example, switching a light on and off. There are two options to activate the output:

- the Pulse button activates the output for a defined period
- Active/Inactive displays two buttons (on/off)
HTML Examples
You can add live video from the network camera to your own web site. The camera can transmit a Motion JPEG stream to up to 20 simultaneous connections, although an administrator can restrict this. If MPEG-4 is set as the video format, multicasting is used and the video stream is available for an unlimited number of viewers connected to parts of the network where multicast is enabled. Please note that a separate MPEG-4 license is required for each viewer.

Select the preferred **Video Format** from the drop down list. The available options are Motion JPEG, MPEG-4 using AMC and MPEG-4 using QuickTime.

The Motion JPEG selection has additional settings for **Image type**, **Image size** and other optional settings to configure the video stream to suit your web page. Click **Update** once satisfied.

The camera generates the required source code for your configuration. Copy this code and paste it into your own web page code.

External Video
The network camera can also display video images from other Axis network cameras and video servers, directly on the Live View page. These are known as **External Video sources**. Once configured, these external video sources are available from the drop-down list on the Live View page.

Click the **Add** button to open the External Video Source Setup dialog, which is used to make all the necessary settings. Enter the IP address or host name of the external video source you wish to add. Depending on the external source, select either MPEG-2, MPEG-4 or Motion JPEG as the type of video stream to receive.

Sequence Mode
The Live View page can be configured to rotate through the internal and selected external video sources, in order or at random. Select the desired video sources and enter the time in seconds to display each source (up to 59 minutes). Click **Save**.

The Sequence buttons appear on the Live View page to enable the viewer to start and stop the sequence mode.
Event Configuration

An event or Event Type in the camera triggers actions when activated. An event type is a set of parameters that defines the actions. A common event type is an alarm that causes the camera to upload images. Many event types use an Event Server, to receive uploaded images.

This section describes how to configure the camera to perform certain actions when events occur.

**Definitions**

<table>
<thead>
<tr>
<th>Event type</th>
<th>A set of parameters describing how and when the camera performs certain actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triggered Event - see page 30</td>
<td>An event that is started by some sort of signal, for example, an external device such as a door switch, motion detection, or system event.</td>
</tr>
<tr>
<td>Scheduled Event - see page 31</td>
<td>Pre-programmed time period(s) during which an event will run.</td>
</tr>
<tr>
<td>Action</td>
<td>This occurs when the event runs, for example, uploading of images to an FTP server, or email notification.</td>
</tr>
</tbody>
</table>

**Event Servers**

Event Servers are used to receive uploaded image files and/or notification messages. To set up Event Server connections in your camera, go to Setup > Event Configuration > Event Servers and enter the required information for the required server type.

<table>
<thead>
<tr>
<th>Server type</th>
<th>Purpose</th>
<th>Information required</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP Server</td>
<td>Receives uploaded images</td>
<td>• Descriptive name of your choice&lt;br&gt;• Network address (IP address or host name)&lt;br&gt;• User Name and Password</td>
</tr>
<tr>
<td>HTTP Server</td>
<td>Receives notification messages&lt;br&gt;Receives uploaded images</td>
<td>• Descriptive name of your choice&lt;br&gt;• URL (IP address or host name)&lt;br&gt;• User Name and Password</td>
</tr>
<tr>
<td>TCP Server</td>
<td>Receives notification messages</td>
<td>• Descriptive name of your choice&lt;br&gt;• Network address (IP address or host name)&lt;br&gt;• Port number</td>
</tr>
</tbody>
</table>

For details on each setting, see the online help available from each web page.

When the setup is complete, the connection can be tested by clicking the Test button (the connection test takes approximately 10 seconds).

**Event Types**

An Event Type describes how and when the camera performs certain actions.
Example: If somebody passes in front of a camera and an event has been configured to detect and respond to motion, the camera can record and save images to an FTP server, and can send a notification e-mail to an e-mail address. Images can be sent as e-mail attachments.

Triggered Event

A triggered event could be activated by:

- a push button connected to the camera’s input port
- detected movement in a configured motion detection window
- a manually activated action, such as from an action button in the web interface
- sound at a certain decibel level
- on restart (reboot), after power loss
- camera tampering.

How to set up a triggered event

The following example describes how to set up the camera to upload images when the main door is opened.

1. Click Add triggered... on the Event Types page. The Triggered Event Type Setup page appears.
2. Enter a descriptive Name for the event, such as Main door open.
3. Set the Priority – High, Normal or Low (see the online help).
4. Set the Respond to Trigger... parameters to define when the event is active, for example, after office hours.
5. Select the trigger alternative from the Triggered by... drop-down list. For example, select Input ports, for a sensor connected to the door.
6. Set the **When Triggered...** parameters, that is, define what the camera will do if the main door is opened - upload images to an FTP server or send an e-mail notification.

7. Click **OK** to save the event in the Event Types list.

Please see the online help for descriptions of each available option.

**Note:** Up to 10 event types can be configured in the camera, and up to three of these can be configured to upload images. File names can be formatted according to specific requirements. See File Naming & Date/Time Formats online help.

**Pre-trigger and Post-trigger buffers**

This function is very useful when checking to see what happened immediately before and/or after a trigger, for example, 30 seconds before and/or after a door was opened. Check the **Upload images** checkbox under Event Types > Add Triggered... > **When Triggered...** to view the options. All uploaded images are JPEG images.

- **Include pre-trigger buffer** - images stored internally in the server from the time immediately preceding the trigger. Check the box to enable the pre-trigger buffer, enter the desired length of time and specify the required image frequency.

- **Include post-trigger buffer** - contains images from the time immediately after the trigger. Configure as for pre-trigger.

**Notes:**

- Pre-trigger and Post-trigger buffers will be lost if the connection to the event server fails.
- The maximum length of the pre-/post-buffer depends on the video image size and selected frame rate.
- If the pre- or post-buffer is too large for the camera’s internal memory, the frame rate is reduced and individual images may be missing. If this occurs, an entry is created in the unit’s log file.

**Continue image upload (unbuffered)** - enables the upload of video images for a fixed length of time. Specify the length of time for the uploaded recording, in seconds, minutes or hours, or for as long as the trigger is active. Finally, set the desired image frequency to the maximum (the maximum available) or to a specified frame rate. The frame rate will be the best possible, but might not be as high as specified, especially if uploading via a slow connection.

**Scheduled Event**

A **Scheduled event** can be activated at preset times, in a repeating pattern on selected weekdays.

**Configuration example:**

1. Click **Add scheduled...** on the Event Types page.
2. Enter a descriptive **Name** for the event, such as Scheduled e-mail upload.
3. Set the **Priority** (High, Normal or Low).

4. Set the **Activation Time** parameters (24h clock) for the event - start on Sundays at 13.00 with a duration of 12 hours.

5. Set the **When Activated...** parameters, (what the camera would do at the specified time) for example, send uploaded images to an e-mail address.

6. Click **OK** to save the Event in the Event Types list.

Please see the online help for descriptions of each available option.

**Camera tampering**

The camera tampering application generates an alarm whenever the camera is repositioned, or when the lens is covered, sprayed, or severely defocused.

You must also create an event, see How to set up a triggered event, on page 28, for the camera to send an alarm.

![Camera Tampering settings](image)

**Settings**

The **Minimum duration** parameter sets the minimum tampering period, that is an alarm will not be triggered until this period has elapsed, even if the tampering conditions are otherwise met. This can help prevent false alarms for known conditions that affect the image.

If the camera lens is sprayed or covered so that the camera live view becomes dark, it will not be possible to distinguish this situation from other situations where the same effect is seen, such as when lighting conditions change.

When the **Alarm for dark images** parameter is enabled, alarms are generated for all cases where the lights are either dimmed or turned off, or if the lens is sprayed, covered, or severely defocused. If not enabled, no alarm will be sent.

After you define these settings, click **Save**.
Motion Detection

Motion detection is used to generate an alarm whenever movement occurs (or stops) in the video image. A total of 10 Include and/or Exclude windows can be configured.

- **Included** windows target specific areas within the whole video image
- **Excluded** windows define areas within an Include window that should be ignored (areas outside Include windows are automatically ignored)

Once configured, the motion detection windows appear in the list of available triggers, for triggering events. See *How to set up a triggered event, on page 30*.

**Note:** Using the motion detection feature may decrease the camera’s overall performance.

Configuring Motion Detection

1. Click **Motion Detection** in the Event Configuration menu.
2. Click the **Add Window** button.
3. Select the **Include** or **Exclude** option to define an Include or Exclude window, and enter a descriptive name in the field below.
4. Adjust the size (drag the bottom right-hand corner) and position (click on the text at the top and drag to the desired position) of the active window.
5. Adjust the **Object Size**, **History** and **Sensitivity** profile sliders (see table below for details). Any detected motion within an active window is then indicated by red peaks in the Activity window (the active window has a red frame).
6. Click Save.

To exclude parts of the Include window, select the Exclude option and position the Exclude window as required, within the Include window.

Please see the online help 📚 for descriptions of each available option.

<table>
<thead>
<tr>
<th>Object Size</th>
<th>History</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>High level</td>
<td>Only very large objects trigger motion detection</td>
<td>Ordinary colored objects on ordinary backgrounds will trigger the motion detection</td>
</tr>
<tr>
<td>Low level</td>
<td>Even very small objects trigger motion detection</td>
<td>Only very bright objects on a dark background trigger motion detection</td>
</tr>
<tr>
<td>Default value</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>

Examples:

- Avoid triggering on small objects in the video image by setting the object size level to high.
- To reduce the number of triggers if there is a lot of movement during a short period of time, select a high history level.
- To only detect flashing light, select low sensitivity. In other cases, a high sensitivity level is recommended.

Port Status

Under Event Configuration > Port Status there is a list showing the status for the camera’s input and output. This is for the benefit of Operators who have no access to the System Options section.

Example: If the Normal state for a push button connected to an input is set to Open circuit – as long as the button is not pushed, the state is inactive. If the button is pushed, the state of the input changes to active.
System Options

Security

Users

User access control is enabled by default. An administrator can set up other users, by giving these user names and passwords. It is also possible to allow anonymous viewer login, which means that anybody may access the Live View page, as described below:

The user list displays the authorized users and user groups (levels):

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewer</td>
<td>Provides the lowest level of access, which only allows access to the Live View page.</td>
</tr>
<tr>
<td>Operator</td>
<td>An operator can view the Live View page, create and modify events, and adjust certain other settings. Operators have no access to System Options.</td>
</tr>
<tr>
<td>Administrator</td>
<td>An administrator has unrestricted access to the Setup tools and can determine the registration of all other users.</td>
</tr>
</tbody>
</table>

HTTP/RTSP Password Settings - Select the type of password to allow. You may need to allow unencrypted passwords if there are viewing clients that do not support encryption, or if you recently upgraded the firmware and the existing clients do support encryption, but need to log in again, and be configured to use this functionality.

User Settings - Check the relevant box to enable anonymous viewer login – allows any viewer direct access to the Live View page.

Enter a value against ‘Maximum number of simultaneous viewers limited to’ to restrict the number of Motion JPEG and MPEG-4 viewers accessing the unit. This is useful if you need to save on bandwidth. Note that within the limit of 20 users, all multicast viewers count as one viewer.

IP Address Filtering

Enable IP Address Filtering to allow or deny access to the network cameras. Once enabled, the IP addresses in the list are allowed or denied access according to the choice made in the drop-down list Allow/Deny the following IP addresses.

The administrator can add up to 256 IP address entries to the list (a single entry can contain multiple IP addresses). The users from these IP addresses need to be specified in the user list with the appropriate access rights. This is done from Setup > System Options > Security > Users.

Referrals - To prevent unauthorized clients from including the video stream from the cameras into external web pages, check the Referrals checkbox and enter the IP address or host name of the computer that hosts the web pages with the included video stream. Several IP addresses/host names can be defined and are separated by semicolons (;). This option is only applicable to Motion JPEG video streams.
Notes: • If the referrals feature is enabled and you wish to also allow normal access to the Live View page, the product’s own IP address or host name must be added to the list of allowed referrers.
• Restricting referrers has no effect on an MPEG-4 video stream. To restrict an MPEG-4 stream, IP address filtering must be enabled.
• Restricting referrers is of greatest value when not using IP address filtering. If IP address filtering is used, then the allowed referrers are automatically restricted to those allowed IP addresses.

HTTPS

The network cameras support encrypted browsing using HTTPS.

A self-signed certificate can be used until a Certificate Authority-issued certificate has been obtained. Click the Create self-signed Certificate button to install a self-signed certificate. Although self-signed certificates are free and offer some protection, true security is only implemented after the installation of a signed certificate issued by a certificate authority.

A signed certificate can be obtained from an issuing Certificate Authority by clicking the Create Certificate Request button. When the signed certificate is returned, click the Install signed certificate button to import the certificate. The properties of any certificate request currently resident in the camera or installed can also be viewed by clicking the Properties... button. The HTTPS Connection Policy must also be set in the drop-down lists to enable HTTPS in the camera.

For more information, please refer to the online help.

802.1x – Network Admission Control

IEEE 802.1x is an IEEE standard for port-based Network Admission Control. It provides authentication to devices attached to a network port (wired or wireless), establishing a point-to-point connection, or, if authentication fails, preventing access on that port. 802.1x is based on EAP (Extensible Authentication Protocol).

In a 802.1x enabled network switch, clients equipped with the correct software can be authenticated and allowed or denied network access at the Ethernet level.

Clients and servers in an 802.1x network may need to authenticate each other by some means. In the Axis implementation this is done with the help of digital certificates provided by a Certification Authority. These are then validated by a third-party entity, such as a RADIUS server, examples of which are Free Radius and Microsoft Internet Authentication Service.

To perform the authentication, the RADIUS server uses various EAP methods/protocols, of which there are many. The one used in the Axis implementation is EAP-TLS (EAP-Transport Layer Security).

The AXIS network video device presents its certificate to the network switch, which in turn forwards this to the RADIUS server. The RADIUS server validates or rejects the certificate and responds to the switch, and sends its own certificate to the client for validation. The switch then allows or denies network access accordingly, on a preconfigured port.
The authentication process

1. A CA server provides the required signed certificates.
2. The Axis video device requests access to the protected network at the network switch. The switch forwards the video device's CA certificate to the RADIUS server, which then replies to the switch.
3. The switch forwards the RADIUS server's CA certificate to the video device, which also replies to the switch.
4. The switch keeps track of all responses to the validation requests. If all certificates are validated, the Axis video device is allowed access to the protected network via a preconfigured port.

RADIUS - RADIUS (Remote Authentication Dial In User Service) is an AAA (Authentication, Authorization and Accounting) protocol for applications such as network access or IP mobility. It is intended to work in both local and roaming situations.

CA servers - In cryptography, a Certification Authority (CA) is an entity that provides signed digital certificates for use by other parties, and thus acts a trusted third party.

There are many commercial CAs that charge for their services. Institutions and governments may have their own CA, and there are free CAs available.
Date & Time

Current Server Time - displays the current date and time (24h clock). The time can be displayed in 12h clock format in the overlay (see below).

New Server Time - Select your time zone from the drop-down list. If you want the server clock to automatically adjust for daylight savings time, select the Automatically adjust for daylight saving time changes.

From the Time Mode section, select the preferred method to use for setting the time:

- **Synchronize with computer time** - sets the time from the clock on your computer.
- **Synchronize with NTP Server** - the camera will obtain the time from an NTP server every 60 minutes.
- **Set manually** - this option allows you to manually set the time and date.

**Note:** If using a host name for the NTP server, a DNS server must be configured under TCP/IP settings. See Network > Basic TCP/IP Settings below.

Date & Time Format Used in Images - specify the formats for the date and time (12h or 24h) displayed in the video streams.

Use the predefined formats or use your own custom date and time formats. See Advanced File Naming & Date/Time Formats in the online help for information on how to create your own date and time formats.

Network

Basic TCP/IP Settings

IP Address Configuration - The network cameras support both IP version 4 and IP version 6. Both versions may be enabled simultaneously, and at least one version must always be enabled.

When using IPv4, the IP address for the camera can be set automatically via DHCP, or a static IP address can be set manually.

If IPv6 is enabled, the network cameras receive an IP address according to the configuration in the network router.

There are also options for setting up notification of changes in the IP address, and for using the AXIS Internet Dynamic DNS Service. For more information on setting the IP address, please see the online help.
Notes:

- DHCP is a protocol for automatic IP address assignment on a network. IP address assignment via DHCP may lead to the situation where the IP address changes and you lose contact with the camera. Configure the options for notification of IP address change (under Services) to receive notification from the camera when the IP address changes.
- Alternatively, if your DHCP server can update a DNS server, you can access the network cameras by the host names which are always the same, regardless of the IP address.

Services - Enable ARP/Ping setting of IP address - The IP address can be set using the ARP/Ping method, which associates the unit's MAC address with an IP address. Check this box to enable the service. Leave disabled to prevent unintentional resetting of the IP address.

Notes:

- The ARP/Ping service is automatically disabled two minutes after the unit is started, or as soon as an IP address is set.
- Pinging the unit is still possible when this service is disabled.

Options for notification of IP address change - if the IP address for the camera changes, (changed automatically by DHCP, for example), you can choose to be notified of the change. Click Settings... and enter the required information.

AXIS Internet Dynamic DNS Service - Use the AXIS Internet Dynamic DNS service to assign a host name for easy access to your network camera (requires Internet access).

Click Settings... to register the camera with the Axis Internet Dynamic DNS service, or to modify the existing settings (requires access to the Internet). The domain name currently registered at the Axis Internet Dynamic DNS service for your product can at any time be removed.

For more information, please refer to the online help.

Advanced TCP/IP Settings

DNS Configuration - DNS (Domain Name Service) provides the translation of host names to IP addresses on your network.

Obtain DNS server address via DHCP - automatically use the DNS server settings provided by the DHCP server. Click the View button to see the current settings.

Use the following DNS server address - enter the desired DNS server by specifying the following:
Domain name - enter the domain(s) to search for the host name used by the network cameras. Multiple domains can be separated by semicolons (;). The host name is always the first part of a Fully Qualified Domain Name, for example, myserver is the host name in the Fully Qualified Domain Name myserver.mycompany.com where mycompany.com is the Domain name.

DNS servers - enter the IP addresses of the primary, and secondary DNS servers.

Note: This is not mandatory with regard to secondary DNS servers.

NTP Configuration – Obtain NTP server address via DHCP - check this radio button to automatically look up and use the NTP server settings as provided by DHCP. Click the View button to see the current settings.

Use the following NTP server address - to create manual settings, check this radio button and enter the host name or IP address of the NTP server.

Host Name Configuration - The network cameras can be accessed using a host name, instead of an IP address. The host name is usually the same as the assigned DNS Name.

For more information, please see Security on page 35.

Link-Local IPv4 Address - This is enabled by default and assigns the network cameras an additional IP address for use with UPnP™. The camera can have both a Link-Local IP and a static/DHCP-supplied IP address at the same time - these will not affect each other.

HTTP and HTTPS – The default HTTP/HTTPS port numbers (80 and 443 respectively) can be changed to any port within the range 1024-65535. This is useful for simple security port mapping, for example.

NAT traversal (port mapping) for IPv4 – A broadband router allows devices on a private network (LAN) to share a single connection to the Internet. This is done by forwarding network traffic from the private network to the “outside”, that is, the Internet. Security on the private network (LAN) is increased since most broadband routers are pre-configured to stop attempts to access the private network (LAN) from the public network/Internet.
Use **NAT traversal** when your network cameras are located on an intranet (LAN) and you wish to make it available from the other (WAN) side of a NAT router. With NAT traversal properly configured, all HTTP traffic to an external HTTP port in the NAT router is forwarded to the camera.

### Notes:
- For NAT traversal to work, this must be supported by the broadband router.
- The broadband router has many different names: "NAT router", "Network router", Internet Gateway", "Broadband sharing device" or "Home firewall" but the essential purpose of the device is the same.

**Enable/Disable** - when enabled, the network cameras attempt to configure port mapping in a NAT router on your network, using UPnP™. Note that UPnP™ must be enabled in the camera (see System Options > Network > UPnP™).

**Use manually selected NAT router** - select this option to manually select a NAT router and enter the IP address for the router in the field provided.

If a router is not manually specified, the network cameras automatically search for NAT routers on your network. If more than one router is found, the default router is selected.

**Alternative HTTP port** - select this option to manually define an external HTTP port. Enter the port number in the field provided. If no port is entered here a port number is automatically selected when NAT traversal is enabled.

### Notes:
- An alternative HTTP port can be used/be active even if NAT traversal is disabled. This is useful if your NAT router does not support UPnP and you need to manually configure port forwarding in the NAT router.
- If you attempt to manually enter a port that is already in use, another available port is automatically selected.
- When the port is selected automatically it is displayed in this field. To change this enter a new port number and click Save.

**FTP** - The FTP server running in the network cameras enables the upload of new firmware, and user applications. Check the box to enable the service.

**RTSP** - The RTSP protocol allows a connecting client to start an MPEG-4 stream. Check the box to enable the server and enter the RTSP port number to use. The default setting is 554. Note that MPEG-4 video streams will not be available if this service is not enabled.
Network Traffic - Connection Type - the default setting is Auto-negotiate, which means that the correct speed is automatically selected. If necessary, you can set the connection speed by selecting it from the drop-down list.

Maximum bandwidth - to minimize the impact on other services running on your network, it is possible to configure the maximum network bandwidth the product uses. Specify the maximum bandwidth (in Mbit/s or kbit/s) allowed, or set to Unlimited.

SOCKS

SOCKS is a networking proxy protocol. The Axis network camera can be configured to use a SOCKS server to reach networks on the other side of a firewall/proxy server. This functionality is useful if the network camera is located on a local network behind a firewall, and notifications, uploads, alarms, and such need to be sent to a destination outside the local network (such as the Internet).

QoS (Quality of Service)

Quality of Service (QoS) guarantees a certain level of a specified resource to selected traffic on a network. Quality can be defined as a maintained level of bandwidth, low latency, and no packet losses. The main benefits of a QoS-aware network can be summarized as:

- The ability to prioritize traffic and thus allow critical flows to be served before flows with lesser priority.
- Greater reliability in the network, thanks to the control of the amount of bandwidth an application may use, and thus control over bandwidth races between applications.

The QoS in Axis network video products marks the data packets for various types of network traffic originating from the product. This makes it possible for network routers and switches to reserve a fixed amount of bandwidth for these types of traffic. The network cameras mark the following types of traffic:

- video
- audio
- event/alarm
- management network traffic

QoS Settings - For each type of network traffic supported by your Axis network video product, enter a DSCP (Differentiated Services Codepoint) value. This value is used to mark the traffic’s IP header. When the marked traffic reaches a network router or switch, the DSCP value in the IP header tells the router or switch the type of treatment to apply to this type of traffic, for example, how much bandwidth to reserve for it. Note that DSCP values can be entered in decimal or hex form, but saved values are always shown in decimal.

For more information on Quality of Service, please see the Axis support web at www.axis.com/techsup
SMTP (email)

Enter the host names (or IP addresses) and port numbers for your primary and secondary mail servers in the fields provided, to enable the sending of notifications and image email messages from the camera to predefined addresses via SMTP.

If your mail server requires authentication, check the box for Use authentication to log in to this server and enter the necessary information.

SNMP

The Simple Network Management Protocol (SNMP) allows remote management of network devices. Depending on the level of security required, select the version of SNMP to use. The three levels of security are:

- SNMP V1 - includes no security.
- SNMP V2c - uses very simple security. The community name can be specified as a password for read or read/write access to all supported SNMP objects. The community is the the group of network devices using SNMP.
- SNMP V3 - provides encryption and secure passwords. HTTPS must be enabled.

UPnP™

The network camera includes support for UPnP™. UPnP™ is enabled by default, and the network camera then is automatically detected by operating systems and clients that support this protocol.

RTP/MPEG-4

These settings are the port range, IP address, port number (video and audio), and Time-To-Live value to use for the video stream(s) in multicast MPEG-4 format. Only certain IP addresses and port numbers should be used for multicast streams. For more information, please see the online help.

Bonjour

The network cameras include support for Bonjour. When enabled, the camera is automatically detected by operating systems and clients that support this.

Ports & Devices

I/O Ports - the pinout, interface support and the control and monitoring functions provided by this connector are described in The I/O Terminal Connector, on page 47.

LED Settings

The Status indicator LED on the front of the camera can be set to flash at a configurable interval (or to not light up at all) when the unit is accessed. For a listing of all LED behavior, see page 7, or the online help. Note that the LED does not flash when the stream is retrieved using MPEG-4 multicast.
Maintenance

- **Restart** - the camera is restarted without changing any setting.
- **Restore** - the unit is restarted and most current settings are reset to factory default values. The settings that do not reset are:
  - the boot protocol (DHCP or static)
  - the static IP address
  - the default router
  - the subnet mask
  - the system time
- **Default** - the default button should be used with caution. Pressing this returns the camera's settings to the factory default values (including the IP address).

*Upgrade Server* - See *Upgrading the Firmware*, on page 49.

*Backup* - click this button to backup the parameters, and any user-defined script. It is then possible to return to the previous settings, if settings are changed and there is unexpected behavior.

*Restore* - click the **Browse** button to locate the saved backup file (see above) and then click the **Restore** button. The settings are restored to the previous configuration.

**Note:** *Backup* and *Restore* can only be used on the same unit running the same firmware. This feature is not intended for the configuration of multiple units or for firmware upgrades.

Support

The **Support Overview** page provides valuable information on troubleshooting and contact information, should you require technical assistance.

**System Overview** - is a quick look over the camera’s status and settings. Information that can be found here includes the camera’s firmware version, IP address, security, event and image settings and recent log items. Many of the captions are also links to the proper **Setup page** to conveniently make adjustments in the cameras settings.

**Logs & Reports** - when contacting Axis support, please be sure to provide a valid Server Report with your query. The Access Log is automatically included in the server report.

**Information** - the Logs, the **Server Report** and the **Parameter List** may prove useful when troubleshooting a problem or when contacting the Axis support web.

**System Log** - Provides information about system events.
Access Log - The Access Log may be used for various purposes:

- Security - Tracking all access to your the camera. The access log lists the IP addresses, users and networking protocols used to access the camera.
- Simple web attraction tracker.
- System analysis and trouble shooting.

Server Report - Provides information about the server status and should always be included when requesting support.

Parameter List - Shows the unit’s parameters and their current settings.

Connection List - Lists all clients that are currently accessing video and audio. It is also used for system analysis and trouble shooting.

Configuration

From the drop-down lists, select the size and level of information to be added to the System and Access Log files.

The default information level for the Access Log is set to Critical & Warnings. However, in an error situation and when requesting support, set it to the lowest information level Critical & Warnings & Info.

For the Log Level for Email, select from the drop-down list the level of information to send as email and enter the destination email address.

Advanced

Scripting is an advanced function that enables you to customize and use scripts. This function is a very powerful tool.

Caution!
Improper use may cause unexpected behavior or even cause loss of contact with the unit. If a script does cause problems, reset the unit to its factory default settings. A backup file may be of use to return the unit to its latest configuration.

Axis strongly recommends that you do not use this function unless you understand the consequences. Note that Axis support does not provide assistance for problems with customized scripts.

For more information, please visit the Developer pages at www.axis.com/developer

Plain Config - this function is for the advanced user with experience of Axis network camera configuration. All parameters can be set and modified from this page. Help is available from the standard help pages.
About
Here you can find basic information about your network camera. You can also view third party software licenses.

Resetting to the Factory Default Settings
To reset the camera to the original factory default settings, go to the System Options > Maintenance web page (as described in Maintenance on page 44) or use the Control button on the side of the camera (see page 6) as described below:

Using the Control Button
To reset the camera to the factory default settings using the Control Button:

1. Disconnect the power adapter.
2. Press and hold the Control button while reconnecting the power.
3. Keep the Control button pressed until the Status Indicator color changes to amber (this may take up to 15 seconds).
4. Release the Control button.
5. When the Status Indicator changes to green (which may take up to 1 minute), the process is complete and the camera has been reset. The unit now has the default IP address 192.168.0.90

Note: For other methods of setting the IP address, please refer to the product's Installation Guide that accompanies the product, or download a copy from www.axis.com
The I/O Terminal Connector

Pinout and Interface
The 4-pin I/O terminal connector provides the interface to:

- 1 transistor output
- 1 digital input
- auxiliary power and GND

The terminal connector is used in applications for motion detection, event triggering, time lapse recording, alarm notification via email, and image storage to FTP locations.

- **Input** - for connecting a push button, for example. If the push button is pressed, the state changes and the input becomes active (shown under Event Configuration > Port Status).
- **Output** - connects an alarm device that can be activated by Output buttons on the Live View page, or by an Event Type. The output shows as active (Event Configuration > Port Status) if the alarm device is activated.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>3.3V DC</td>
<td>Can be used to power auxiliary equipment, max 50mA.</td>
</tr>
<tr>
<td>3</td>
<td>Digital Input</td>
<td>Connect to GND to activate, or leave floating (or unconnected) to deactivate.</td>
</tr>
<tr>
<td>4</td>
<td>Transistor Output</td>
<td>With a maximum load of 50mA and a maximum voltage of 24V DC, this output has an open-collector NPN transistor with the emitter connected to the GND pin. If used with an external relay, a diode must be connected in parallel with the load, for protection against voltage transients.</td>
</tr>
</tbody>
</table>
Connect input/output devices to the camera as follows:

1. Attach the cables for the device securely to the supplied green connector block.
2. Once the cables are connected, push the connector block into the green terminal connector on the camera.

Terminal Connector
Troubleshooting

Checking the Firmware

Firmware is software that determines the functionality of the network cameras. One of your first actions when troubleshooting a problem should be to check the current firmware version. The latest version may contain a correction that fixes your particular problem. The current firmware version in your camera can be seen on the page Setup > Basic Configuration.

Upgrading the Firmware

When you upgrade your camera with the latest firmware from the Axis Web site, your camera receives the latest functionality available. Always read the upgrade instructions and release notes available with each new release, before updating the firmware.

Note: Preconfigured and customized settings are saved when the firmware is upgraded (providing the features are available in the new firmware) although this is not guaranteed by Axis Communications. Always read the instructions and release notes available with each new release, before upgrading the firmware.

1. Save the firmware file to your computer. The latest version of the firmware is available free of charge from the Axis website at www.axis.com/techsup.

2. Go to Setup > System Options > Maintenance in the camera’s web pages.

3. In the Upgrade Server section, browse to the desired firmware file on your computer. Click Upgrade.

Notes:

- After starting the upgrade process, always wait at least 5-10 minutes before restarting the camera, even if you suspect the upgrade has failed.
- Your dealer reserves the right to charge for any repair attributable to faulty upgrading by the user.
- The AXIS Camera Management software tool can be used for multiple upgrades. Please see the Axis website at www.axis.com for more information.
Emergency Recovery Procedure

If power or the network connection to the camera is lost during the upgrade, the process fails and the unit becomes unresponsive. A flashing red Status LED indicates a failed upgrade. To recover the unit, follow the steps below. The serial number is found on the label attached to the bottom of the camera.

1. UNIX/Linux - From the command line, type the following:
   
<table>
<thead>
<tr>
<th>Command 1</th>
<th>Command 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp -s &lt;IP address of camera&gt; &lt;serial number&gt; temp</td>
<td>ping -s 408 &lt;IP address of camera&gt;</td>
</tr>
</tbody>
</table>

   Windows - From a command/DOS prompt, type the following:
   
<table>
<thead>
<tr>
<th>Command 1</th>
<th>Command 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp -s &lt;IP address of camera&gt; &lt;serial number&gt;</td>
<td>ping -l 408 -t &lt;IP address of camera&gt;</td>
</tr>
</tbody>
</table>

2. If the unit does not reply within a few seconds, restart it and wait for a reply. Press CTRL+C to stop Ping.

3. Open a browser and type in the camera’s IP address. In the page that appears, use the Browse button to select the upgrade file to use, for example, axis216fd.bin. Then click the Load button to restart the upgrade process.

4. After the upgrade is complete (1-10 minutes), the unit automatically restarts and shows a steady green on the Power and Status LEDs and flashing green or amber on the Network LED.

5. Reinstall the camera, referring to the installation guide.

If the emergency recovery procedure does not get the camera up and running again, please contact Axis support at www.axis.com/techsup/

Axis Support

If you contact Axis support, please help us to help you solve your problems by providing the server report, the log file and a detailed description of the problem.

Server Report - go to Setup > System Options > Support Overview. The server report contains important information about the server and its software, as well as a list of the current parameters.

The Log file is available from Setup > System Options > Logs & Reports. The Log file records events in the unit since the last system restart and can be a useful diagnostic tool when troubleshooting.
## Symptoms, Possible Causes, and Remedial Action

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Remedial Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problems setting the IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When using ARP/Ping</td>
<td>Try the installation again. The IP address must be set within two minutes after power has been applied to the camera. Ensure the Ping length is set to 408. See the Installation Guide.</td>
<td></td>
</tr>
<tr>
<td>The camera is located on a different subnet</td>
<td>If the IP address intended for the camera and the IP address of your computer are located on different subnets, you will not be able to set the IP address. Contact your network administrator to obtain an appropriate IP address.</td>
<td></td>
</tr>
<tr>
<td>The IP address is being used by another device</td>
<td>Disconnect the camera from the network. Run the Ping command. (In a Command/DOS window, type ping and the IP address of the unit). If you receive: Reply from &lt;IP address&gt;: bytes = 32; time = 10 ms........ - this means that the IP address may already be in use by another device on your network. You must obtain a new IP address and reinstall the unit. If you see: Request timed out - this means that the IP address is available for use with your camera. In this case, check all cabling and reinstall the unit.</td>
<td></td>
</tr>
<tr>
<td>Possible IP address conflict with another device on the same subnet</td>
<td>The static IP address in the camera is used before the DHCP server sets a dynamic address. This means that if the same default static IP address is also used by another device, there may be problems accessing the camera. To avoid this, set the static IP address to 0.0.0.0.</td>
<td></td>
</tr>
<tr>
<td>The camera cannot be accessed from a browser</td>
<td>1) Move the camera to an isolated network or to one with no DHCP or BOOTP server. Set the IP address again, using the AXIS IP Utility (see the Installation Guide) or the ARP/Ping commands. 2) Access the unit and disable DHCP in the TCP/IP settings. Return the unit to the main network. The unit now has a fixed IP address that will not change. 3) As an alternative to 2), if dynamic IP address via DHCP or BOOTP is required, select the required service and then configure IP address change notification from the network settings. Return the unit to the main network. The unit now has a dynamic IP address, but will notify you if the address changes.</td>
<td></td>
</tr>
<tr>
<td>Other networking problems</td>
<td>Test the network cable by connecting it to another network device, then Ping that device from your workstation. See instructions above.</td>
<td></td>
</tr>
<tr>
<td>Camera is accessible locally, but not externally</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadband router configuration</td>
<td>To configure your broadband router to allow incoming data traffic to the camera, enable the NAT-traversal feature which will attempt to automatically configure the router to allow access to the camera. This is enabled from Setup &gt; System Options &gt; Network &gt; TCP/IP Advanced.</td>
<td></td>
</tr>
<tr>
<td>Firewall protection</td>
<td>Check the Internet firewall with your system administrator.</td>
<td></td>
</tr>
<tr>
<td>Default routers required</td>
<td>Check if you need to configure the default router settings.</td>
<td></td>
</tr>
<tr>
<td>Problems with the MPEG-4 format</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No MPEG-4 displayed in the client</td>
<td>Check that the correct network interface is selected in the AMC control panel applet (network tab). Check that the relevant MPEG-4 connection methods are enabled in the AMC control panel applet (network tab). In the AMC control applet, select the MPEG-4 tab and click the button Set to default MPEG-4 decoder.</td>
<td></td>
</tr>
<tr>
<td>No multicast MPEG-4 displayed in the client</td>
<td>Check with your network administrator that the multicast addresses used by the camera are valid for your network. Check with your network administrator to see if there is a firewall preventing viewing.</td>
<td></td>
</tr>
<tr>
<td>Multicast MPEG-4 only accessible by local clients</td>
<td>Check if your router supports multicasting, or if the router settings between the client and the server need to be configured. The TTL (Time To Live) value may need to be increased.</td>
<td></td>
</tr>
</tbody>
</table>
| Poor rendering of MPEG-4 images | Color depth set incorrectly on clients. Set to 16-bit or 32-bit color. 
If text overlays are blurred, or if there are other rendering problems, you may need to enable Advanced Video Rendering from the MPEG-4 tab in the AMC control panel applet.
Ensure that your graphics card is using the latest device driver. The latest drivers can usually be downloaded from the manufacturer’s web site. |
| Color saturation is different in MPEG-4 and Motion JPEG | Modify the settings for your graphics adapter. Please see the adapter’s documentation for more information. |
| Lower frame rate than expected | Reduce number of applications running on the client computer.
Limit the number of simultaneous viewers. This is done in System Options > Security > Users.
Check with the system administrator that there is enough bandwidth available. See also the online help.
Check in the AMC control panel applet (MPEG-4 tab) that video processing is not set to Decode only I frames.
Lower the image resolution. |
| Why do I not get 30 frames per second? | See the section General performance considerations, on page 60. |
| Lost or poor images in pre-trigger buffer (MPEG-4 video stream) | Make sure that Cyclic refresh under Setup > Video & Image > Advanced > MPEG-4 is disabled. |
| Image degeneration | Decrease the GOV length, see the online help for more information. |
| The Power indicator is not constantly lit | Faulty power supply
Check that you are using an AXIS PS-H power supply. |
| The Status and Network indicator LEDs are flashing red rapidly | Hardware failure
Contact your Axis dealer. |
| The Status indicator LED is flashing red and the camera is inaccessible | A firmware upgrade has been interrupted or the firmware has otherwise been damaged
See the Emergency Recovery Procedure above. |
| No images displayed on web page | Problem with AMC. (Internet Explorer only)
To enable the updating of video images in Microsoft Internet Explorer, set your browser to allow ActiveX controls. Also, make sure that AXIS Media Control (AMC) component is installed on your workstation. |
| Installation of additional ActiveX component restricted or prohibited | Configure your camera to use a Java applet for updating the video images under Live View Config > Layout > Default Viewer for Internet Explorer. See the online help for more information. |
| Video/Image problems, general | Image too dark or too light
Check the video image settings. See the online help on Video and Image Settings. |
| Missing images in uploads | This can occur when trying to use a larger image buffer than is actually available. Try lowering the frame rate or the upload period. |
| Slow image update | Configuring pre-buffers, motion detection, high-resolution images, or high frame rates, will affect the performance of the camera. |
| Poor performance | Poor performance may be caused by heavy network traffic, multiple users accessing the unit, low performance clients, use of features such as Motion Detection, Event handling, Image rotation other than 180 degrees. |
| Poor quality snapshot images | Screen incorrectly configured on your workstation
In Display Properties, configure your screen to show at least 65000 colors, that is, at least 16-bit. Using only 16 or 256 colors will produce dithering artifacts in the image. |
### Overlay/Privacy mask is not displayed

Incorrect size or location of overlay or privacy mask. | The overlay or privacy mask may have been positioned incorrectly or wrong resolution may have been used while positioning. Refer to the online help for information on the limitations when using image overlays and privacy masks.

### Browser freezes

Netscape 7.x or Mozilla 1.4 (or later) can sometimes freeze on a slow computer | Lower the image resolution.

### Problems uploading files

Limited space | There is only limited space available for the upload of your own files. Try deleting existing files to free up space.

### Motion Detection triggers unexpectedly

Changes in luminance | Motion detection is based on changes in luminance in the image. This means that if there are sudden changes in the lighting, motion detection may be triggered mistakenly. Lower the sensitivity setting to avoid problems with luminance.

### No audio

Incorrect setup | Check the sound card in the PC. Ensure that the mute button is not pressed and the volume settings are correct.

No audio or very poor audio quality | Check that the correct Audio Input source is selected under Setup > Audio > Source. Select Microphone for the internal microphone or for a connected external microphone. Select Line for a connected line in source.

Audio volume too low/high

Volume settings incorrect | The volume of the microphone is either too high or too low. Change the volume for the microphone in the toolbar on the Live View page.

Poor audio quality

Too many users | Too many users/clients connected to the camera may affect the sound quality adversely. Try limiting the number of clients allowed to connect under Basic Configuration > Users.

CPU overloaded | Reduce the number of listeners and viewers and decrease the image resolution and compression.

Unsynchronized audio and video | It is recommended that the camera’s time setting is synchronized with an NTP Server. This is enabled under System Options > Date & Time.

Distorted audio | Check that the correct Audio Input source is selected under Setup > Audio > Source. Select Microphone for the internal microphone or for a connected external microphone. Select Line for a connected line in source.

Stuttering audio | Audio break-up (stuttering audio) can be reduced using the Buffer slider control on the Live View page. A higher level will reduce audio break-up, but may introduce a noticeable lag in audio transmission.

For further assistance, please contact your reseller or see the support pages on the Axis website at www.axis.com/techsup
### Technical Specifications - AXIS 216FD/216FD-V

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Models</strong></td>
<td>• AXIS 216FD: Tamper-resistant casing</td>
</tr>
<tr>
<td></td>
<td>• AXIS 216FD-V: Vandal-resistant casing</td>
</tr>
<tr>
<td><strong>Image sensor</strong></td>
<td>¼&quot; Micron progressive scan RGB CMOS</td>
</tr>
<tr>
<td><strong>Lens</strong></td>
<td>• Fujinon, F1.3 varifocal 2.8 -10mm</td>
</tr>
<tr>
<td></td>
<td>• DC-iris</td>
</tr>
<tr>
<td></td>
<td>• Focus range: 0.3m to infinity</td>
</tr>
<tr>
<td><strong>Angle of view</strong></td>
<td>Horizontal: 73°-20°</td>
</tr>
<tr>
<td><strong>Camera angle</strong></td>
<td>• Pan: 360°</td>
</tr>
<tr>
<td>adjustment</td>
<td>• Tilt: 170°</td>
</tr>
<tr>
<td></td>
<td>• Rotation: 340°</td>
</tr>
<tr>
<td><strong>Minimum</strong></td>
<td>1 lux, F1.3</td>
</tr>
<tr>
<td><strong>illumination</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Video compression</strong></td>
<td>• Motion JPEG</td>
</tr>
<tr>
<td></td>
<td>• MPEG-4 Part 2 (ISO/IEC 14496-2) with motion estimation</td>
</tr>
<tr>
<td></td>
<td>• Profiles: Advanced Simple Profile and Simple Profile</td>
</tr>
<tr>
<td><strong>Resolutions</strong></td>
<td>• 9 resolutions from 640x480 to 160x120 via API</td>
</tr>
<tr>
<td></td>
<td>• 6 selections via configuration web page</td>
</tr>
<tr>
<td><strong>Frame rate</strong></td>
<td>• Up to 30 fps in all resolutions (Motion JPEG or MPEG-4)</td>
</tr>
<tr>
<td><strong>Video streaming</strong></td>
<td>• Simultaneous Motion JPEG and MPEG-4</td>
</tr>
<tr>
<td></td>
<td>• Controllable frame rate and bandwidth</td>
</tr>
<tr>
<td></td>
<td>• Constant and variable bit rate (MPEG-4)</td>
</tr>
<tr>
<td><strong>Image settings</strong></td>
<td>• Compression levels: 100</td>
</tr>
<tr>
<td></td>
<td>• Rotation: 0°, 180°</td>
</tr>
<tr>
<td></td>
<td>• Mirroring</td>
</tr>
<tr>
<td></td>
<td>• Configurable color level, brightness, sharpness, white balance,</td>
</tr>
<tr>
<td></td>
<td>exposure control, fine tuning of behavior at low light</td>
</tr>
<tr>
<td></td>
<td>• Overlay capabilities: time, date, text, image or privacy mask</td>
</tr>
<tr>
<td><strong>Shutter time</strong></td>
<td>1/150000s to 1/4s</td>
</tr>
<tr>
<td><strong>Audio</strong></td>
<td>• Two-way (half duplex), one-way or audio off</td>
</tr>
<tr>
<td></td>
<td>• Built-in microphone, external microphone input or line input.</td>
</tr>
<tr>
<td></td>
<td>• Mono audio output (line level) connects to active speaker with</td>
</tr>
<tr>
<td></td>
<td>built-in amplifier</td>
</tr>
<tr>
<td></td>
<td>• Audio compression AAC LC 8-32 kbit/s, G.711 PCM 64 kbit/s, G.726 ADPCM 32 or</td>
</tr>
<tr>
<td></td>
<td>24 kbit/s</td>
</tr>
<tr>
<td><strong>Security</strong></td>
<td>• Multiple user access levels with password protection</td>
</tr>
<tr>
<td></td>
<td>• IP address filtering</td>
</tr>
<tr>
<td></td>
<td>• HTTPS encryption</td>
</tr>
<tr>
<td></td>
<td>• Network access control IEEE 802.1X</td>
</tr>
<tr>
<td></td>
<td>• User access log</td>
</tr>
<tr>
<td><strong>Users</strong></td>
<td>• 20 simultaneous users</td>
</tr>
<tr>
<td></td>
<td>• Unlimited number of users using multicast (MPEG-4)</td>
</tr>
<tr>
<td>Item</td>
<td>Specification</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Alarm and event management</strong></td>
<td>• Events triggered by video motion detection, audio detection, camera tampering detection, external input or according to a schedule</td>
</tr>
<tr>
<td></td>
<td>• Image upload over FTP, email, and HTTP</td>
</tr>
<tr>
<td></td>
<td>• Notification over TCP, email, HTTP and external output</td>
</tr>
<tr>
<td></td>
<td>• Pre- and post alarm buffer of 9 MB (400 images or more, in full 640x480 resolution)</td>
</tr>
<tr>
<td><strong>Connectors</strong></td>
<td>• RJ-45 for Ethernet 10BaseT/100BaseTX</td>
</tr>
<tr>
<td></td>
<td>• DC jack</td>
</tr>
<tr>
<td></td>
<td>• Terminal block for 1 alarm input and 1 output</td>
</tr>
<tr>
<td></td>
<td>• 3.5 mm jack for Mic in (max 80 mVpp) or Line mono input (max 6.4 Vpp), 3.5 mm jack for Line mono output (max 1.3 Vpp) to active speaker</td>
</tr>
<tr>
<td></td>
<td>• Input impedance: 7.4kΩ Output impedance: Min. 90Ω</td>
</tr>
<tr>
<td><strong>Casing</strong></td>
<td>• AXIS 216FD: Polycarbonate base and polycarbonate transparent cover</td>
</tr>
<tr>
<td></td>
<td>• AXIS 216FD-V: 1000 kg (2200 lbs) impact-resistant casing with metal base and rugged polycarbonate transparent cover</td>
</tr>
<tr>
<td></td>
<td>• Tamper-proof mounting on wall, hard or drop ceiling</td>
</tr>
<tr>
<td><strong>Processors, memory, and clock</strong></td>
<td>• CPU, video processing and compression: ARTPEC-A, RAM: 32 MB, Flash: 8 MB, Battery backed-up real-time clock</td>
</tr>
<tr>
<td><strong>Power</strong></td>
<td>• 4.9–5.1V DC max 3.6W</td>
</tr>
<tr>
<td></td>
<td>• Power over Ethernet (IEEE 802.3af) Class 1</td>
</tr>
<tr>
<td><strong>Operating conditions</strong></td>
<td>• Temperature: 0–50 ºC (32–122 ºF)</td>
</tr>
<tr>
<td></td>
<td>• Humidity 20–80% RH (non-condensing)</td>
</tr>
<tr>
<td><strong>Installation, management and maintenance</strong></td>
<td>• AXIS Camera Management tool on CD and web-based configuration</td>
</tr>
<tr>
<td></td>
<td>• Configuration of backup and restore</td>
</tr>
<tr>
<td></td>
<td>• Firmware upgrades over HTTP or FTP; firmware available at <a href="http://www.axis.com">www.axis.com</a></td>
</tr>
<tr>
<td><strong>Video access from web browser</strong></td>
<td>• Camera live view</td>
</tr>
<tr>
<td></td>
<td>• Video recording to file (ASF)</td>
</tr>
<tr>
<td></td>
<td>• Sequence tour for up to 20 Axis video sources</td>
</tr>
<tr>
<td></td>
<td>• Customizable HTML pages</td>
</tr>
<tr>
<td><strong>Minimum web browsing requirements</strong></td>
<td>• Pentium III CPU 500 MHz or higher, or equivalent AMD,128 MB RAM, DirectX 9.0 compatible graphics board, Direct Draw</td>
</tr>
<tr>
<td></td>
<td>• Windows XP, 2000, Internet Explorer 6.x or later</td>
</tr>
<tr>
<td></td>
<td>For other operating systems and browsers, see <a href="http://www.axis.com/techsup">www.axis.com/techsup</a></td>
</tr>
<tr>
<td><strong>System integration support</strong></td>
<td>• Open API for application integration including VAPIX® API*, AXIS Media Control SDK*, event trigger data in video stream</td>
</tr>
<tr>
<td></td>
<td>• Quality of Service (QoS) Layer 3, DiffServ Model</td>
</tr>
<tr>
<td></td>
<td>• Embedded Linux operating system</td>
</tr>
<tr>
<td></td>
<td>• Available for download at <a href="http://www.axis.com">www.axis.com</a></td>
</tr>
</tbody>
</table>
## Technical Specifications - AXIS 216FD/216FD-V

### Supported protocols
- IPv4/v6, HTTP with Digest Authentication, HTTPS, SSL/TLS*, TCP, QoS, SNMPv1/v2c/v3 (MIB-II), RTSP, RTP, UDP, IGMP, RTCP, SMTP, FTP, ICMP, DHCP, UPnP, Bonjour, ARP, DNS, DynDNS, SOCKS, NTP, IEEE802.1X.
- *This product includes software developed by the Open SSL Project for use in the Open SSL Tool kit ([www.openssl.org](http://www.openssl.org)).

### Video management software (not included)
- AXIS Camera Station: Surveillance application for viewing, recording and archiving up to 25 cameras.
- See [www.axis.com/partner/adp_partners.htm](http://www.axis.com/partner/adp_partners.htm) for further software applications from partners.

### Included accessories
- Installation Guide
- CD with User’s Manual, demo software, installation and management tools
- Mounting and connector kits
- Power supply 5.1 V DC
- MPEG-4 licenses (1 encoder, 1 decoder), MPEG-4 decoder (Windows)

### Accessories (not included)
- Tamper-resistant casing with smoked transparent cover
- Vandal-resistant casing with smoked transparent cover
- Drop ceiling mount kit (AXIS 216FD)
- multi-user decoder license pack

### Approvals
- EN61000-3-2:2000
- EN61000-3-3:1995+A1
- EN 55024:1998+A1
- ICES-003 demonstrated by compliance with CISPR22:1997+A1+A2
- EN 60950
  - Power supply: EN 60950, UL, CSA

### Dimensions (HxWxD) & weight
- 94 x 144 x 132 mm (3.7” x 5.7” x 5.2”)
- Weight AXIS 216FD: 425g (0.94 lb) excl. power supply
- Weight AXIS 216FD-V: 580g (1.28 lb) excl. power supply

### Item | Specification
--- | ---
*This product includes software developed by the Open SSL Project for use in the Open SSL Tool kit ([www.openssl.org](http://www.openssl.org)).

**Video management software (not included)** | AXIS Camera Station: Surveillance application for viewing, recording and archiving up to 25 cameras. See [www.axis.com/partner/adp_partners.htm](http://www.axis.com/partner/adp_partners.htm) for further software applications from partners.

**Included accessories** | Installation Guide, CD with User’s Manual, demo software, installation and management tools, Mounting and connector kits, Power supply 5.1 V DC, MPEG-4 licenses (1 encoder, 1 decoder), MPEG-4 decoder (Windows).

**Accessories (not included)** | Tamper-resistant casing with smoked transparent cover, Vandal-resistant casing with smoked transparent cover, Drop ceiling mount kit (AXIS 216FD), multi-user decoder license pack.


**Dimensions (HxWxD) & weight** | 94 x 144 x 132 mm (3.7” x 5.7” x 5.2”), Weight AXIS 216FD: 425g (0.94 lb) excl. power supply, Weight AXIS 216FD-V: 580g (1.28 lb) excl. power supply.
## Technical Specifications - AXIS 216MFD/216MFD-V

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
</table>
| Models             | • AXIS 216MFD: Tamper-resistant casing  
• AXIS 216MFD-V: Vandal-resistant casing   |
| Image sensor       | 1/3" Micron progressive scan RGB 1.3 Megapixel CMOS                                                                                           |
| Lens               | • Fujinon F1.3 varifocal 2.8-10 mm  
• DC-iris  
• Focus range: 0.3 m to infinity |
| Angle of view      | Horizontal: 27°-100°                                                                                                                        |
| Camera angle       | • Pan: 360°  
• Tilt: 170°  
• Rotation: 340°                                                                                                                                  |
| adjustment         | Minimum illumination | 2 lux, F1.3                                                                 |
| Video compression  | • Motion JPEG  
• MPEG-4 Part 2 (ISO/IEC 14496-2) with motion estimation  
• Profiles: Advanced Simple Profile and Simple Profile                                                                                           |
| Resolutions        | • 24 resolutions from 1280x1024 to 160x90 via API  
• 23 selections via configuration web page                                                                                                        |
| Frame rate         | • Motion JPEG:  
Up to 12 fps at 1280x1024  
20 fps at 1024x768 (partial scan)  
30 fps at 800x600 (partial scan)  
• MPEG-4:  
Up to 8 fps at 1280x1024  
13 fps at 1024x768 (partial scan)  
20 fps at 800x600 (partial scan)  
*Partial scan takes the data from the center region of the sensor and scales it down to present an image at optimal frame rate. |
| Video streaming    | • Simultaneous Motion JPEG and MPEG-4  
• Controllable frame rate and bandwidth  
• Constant and variable bit rate (MPEG-4)                                                                                                         |
| Image settings     | • Compression levels: 100  
• Rotation: 0°, 180°  
• Mirroring  
• Configurable color level, brightness, sharpness, white balance, exposure control, fine tuning of behavior at low light  
• Overlay capabilities: time, date, text, image or privacy mask                                                                                  |
| Shutter time       | 1/15000s to 1/4s s                                                                                                                           |
| Audio              | • Two-way (half duplex), one-way or audio off  
• Built-in microphone, external microphone input or line input. Mono audio output (line level) connects to active speaker with built-in amplifier  
• Audio compression AAC LC 8-32 kbit/s, G.711 PCM 64 kbit/s, G.726 ADPCM 32 or 24 kbit/s                                                                 |
<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Security</strong></td>
<td>• Multiple user access levels with password protection,</td>
</tr>
<tr>
<td></td>
<td>• IP address filtering,</td>
</tr>
<tr>
<td></td>
<td>• HTTPS encryption,</td>
</tr>
<tr>
<td></td>
<td>• IEEE 802.1X network access control,</td>
</tr>
<tr>
<td></td>
<td>• User access log</td>
</tr>
<tr>
<td><strong>Users</strong></td>
<td>• 20 simultaneous users</td>
</tr>
<tr>
<td></td>
<td>• Unlimited number of users using multicast (MPEG-4)</td>
</tr>
<tr>
<td><strong>Alarm and event management</strong></td>
<td>• Events triggered by video motion detection,</td>
</tr>
<tr>
<td></td>
<td>• audio detection, camera tampering detection, external input or according to a schedule</td>
</tr>
<tr>
<td></td>
<td>• Image upload over FTP, email, and HTTP</td>
</tr>
<tr>
<td></td>
<td>• Notification over TCP, email, HTTP and external output</td>
</tr>
<tr>
<td></td>
<td>• Pre- and post alarm buffer of 20 MB (250 images or more, in full 1280x1024 resolution)</td>
</tr>
<tr>
<td><strong>Connectors</strong></td>
<td>• RJ-45 for Ethernet 10BaseT/100BaseTX</td>
</tr>
<tr>
<td></td>
<td>• DC jack</td>
</tr>
<tr>
<td></td>
<td>• Terminal block for 1 alarm input and 1 output</td>
</tr>
<tr>
<td></td>
<td>• 3.5 mm jack for Mic in (max 80 mVpp) or Line mono input (max 6.4 Vpp),</td>
</tr>
<tr>
<td></td>
<td>• 3.5 mm jack for Line mono output (max 1.3 Vpp) to active speaker</td>
</tr>
<tr>
<td></td>
<td>• Input impedance: 7.4k Ω Output impedance: Min. 90 Ω</td>
</tr>
<tr>
<td><strong>Casing</strong></td>
<td>• AXIS 216MFD: Polycarbonate base and polycarbonate transparent cover</td>
</tr>
<tr>
<td></td>
<td>• AXIS 216MFD-V: 1000 kg (2200 lbs) impact-resistant casing with metal base and rugged polycarbonate transparent cover</td>
</tr>
<tr>
<td></td>
<td>• Tamper-proof mounting on wall, hard or drop ceiling</td>
</tr>
<tr>
<td><strong>Processors, memory, clock</strong></td>
<td>• CPU, video processing and compression: ARTPEC-A</td>
</tr>
<tr>
<td></td>
<td>• RAM: 64 MB</td>
</tr>
<tr>
<td></td>
<td>• Flash memory: 8 MB</td>
</tr>
<tr>
<td></td>
<td>• Battery backed-up real-time clock</td>
</tr>
<tr>
<td><strong>Power</strong></td>
<td>• 4.9-5.1V DC max 3.8W</td>
</tr>
<tr>
<td></td>
<td>• Power over Ethernet (IEEE 802.3af) Class 1</td>
</tr>
<tr>
<td><strong>Operating conditions</strong></td>
<td>• Temperature: 0-50 ºC (32-122 ºF)</td>
</tr>
<tr>
<td></td>
<td>• Humidity 20-80% RH (non-condensing)</td>
</tr>
<tr>
<td><strong>Installation, management and maintenance</strong></td>
<td>• AXIS Camera Management tool on CD and web-based configuration</td>
</tr>
<tr>
<td></td>
<td>• Configuration of backup and restore</td>
</tr>
<tr>
<td></td>
<td>• Firmware upgrades over HTTP or FTP, firmware available at <a href="http://www.axis.com">www.axis.com</a></td>
</tr>
<tr>
<td><strong>Video access from web browser</strong></td>
<td>• Camera live view</td>
</tr>
<tr>
<td></td>
<td>• Video recording to file (ASF)</td>
</tr>
<tr>
<td></td>
<td>• Sequence tour for up to 20 Axis video sources</td>
</tr>
<tr>
<td></td>
<td>• Customizable HTML pages</td>
</tr>
<tr>
<td>Item</td>
<td>Specification</td>
</tr>
<tr>
<td>------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Minimum web browsing requirements</strong></td>
<td>• Pentium III CPU 500 MHz or higher or equivalent AMD, 128 MB RAM, DirectX 9.0 compatible graphics board, DirectDraw&lt;br&gt;• Windows XP, 2000, Internet Explorer 6.x or later&lt;br&gt;For other operating systems and browsers, see <a href="http://www.axis.com/techsup">www.axis.com/techsup</a></td>
</tr>
<tr>
<td><strong>System integration support</strong></td>
<td>• Open API for application integration including VAPIX API*, AXIS Media Control SDK*, event trigger data in video stream&lt;br&gt;• Quality of Service (QoS) Layer 3, DiffServ Model&lt;br&gt;• Embedded Linux operating system&lt;br&gt;* Available for download at <a href="http://www.axis.com">www.axis.com</a></td>
</tr>
<tr>
<td><strong>Supported protocols</strong></td>
<td>IPV4/v6, HTTP with Digest Authentication, HTTPS, SSL/TLS*, TCP, QoS, SNMPv1/v2c/v3 (MB-ll), RTSP, RTP, UDP, IGMP, RTCP, SMTP, FTP, ICMP, DHCP, UPnP, Bonjour, ARP, DNS, DynDNS, SOCKS, NTP, IEEE802.1X.&lt;br&gt;More information on protocol usage available at <a href="http://www.axis.com">www.axis.com</a>&lt;br&gt;* This product includes software developed by the Open SSL Project for use in the Open SSL Tool kit (<a href="http://www.openssl.org">www.openssl.org</a>)</td>
</tr>
<tr>
<td><strong>Video management software (not included)</strong></td>
<td>AXIS Camera Station: video management software for viewing, recording and archiving up to 25 cameras&lt;br&gt;See <a href="http://www.axis.com/partner/adp_partners.htm">www.axis.com/partner/adp_partners.htm</a> for further software applications from partners.</td>
</tr>
<tr>
<td><strong>Included accessories</strong></td>
<td>• Installation Guide&lt;br&gt;• CD with User’s Manual, demo software, installation and management tools&lt;br&gt;• Mounting and connector kits&lt;br&gt;• Power supply 5.1 V DC&lt;br&gt;• MPEG-4 licenses (1 encoder, 1 decoder), MPEG-4 decoder (Windows)</td>
</tr>
<tr>
<td><strong>Accessories (not included)</strong></td>
<td>• Tamper-resistant casing with smoked transparent cover&lt;br&gt;• Vandal-resistant casing with smoked transparent cover&lt;br&gt;• Drop ceiling mount kit&lt;br&gt;• MPEG-4 Decoder multi-user license pack</td>
</tr>
<tr>
<td><strong>Dimensions (HxWxD) &amp; weight</strong></td>
<td>• 94 x 144 x 132 mm (3.7&quot; x 5.7&quot; x 5.2&quot;)&lt;br&gt;• Weight AXIS 216MFD: 425g (0.94 lb) excl. power supply&lt;br&gt;• Weight AXIS 216MFD-V: 580g (1.28 lb) excl. power supply</td>
</tr>
</tbody>
</table>
General performance considerations

When setting up your system, it is important to consider how various settings and situations will affect performance. Some factors affect the amount of bandwidth (the bit rate) required, others can affect the frame rate, and some affect both. If the load on the CPU reaches its maximum, this will also affect the frame rate.

The following factors are among the most important to consider:

- High image resolutions and/or lower compression levels result in larger images. Bandwidth affected.
- Access by large numbers of Motion JPEG and/or unicast MPEG-4 clients. Bandwidth affected.
- Simultaneous viewing of different streams (resolution, compression, etc.) by different clients. Frame rate and bandwidth affected.
- Accessing both Motion JPEG and MPEG-4 video streams simultaneously. Frame rate and bandwidth affected.
- Heavy usage of event settings affects the camera’s CPU load. Frame rate affected.
- Enabled motion detection. Frame rate and bandwidth affected.
- Heavy network utilization due to poor infrastructure. Bandwidth affected.
- Viewing on poorly performing client PC’s lowers perceived performance. Frame rate affected.
General performance considerations

Optimizing your system
To see the bandwidth and frame rate currently required by the video stream, the
AXIS 216FD/FD-V/MFD/MFD-V provides a tool that can be used to display these values
directly in the video image.

To do this, special format strings are added as part
of a text overlay. Simply add #r (average frame
rate in fps) and/or #b (average bandwidth in kbps)
to the overlay.

For detailed instructions, please see the online help
for Video & Image > Text Overlay Settings, and
the help for File Naming & Date/Time Formats.

Important!
The figures displayed here are the values as delivered by the camera. If other restrictions are currently in
force, (such as bandwidth limitation), these values might not correspond to those actually received by the
client.
For Motion JPEG, these values would be accurate as long as no frame rate limit has been specified.

Bandwidth
As there are many factors that affect bandwidth, it is very difficult to predict the required
amounts. The settings that affect bandwidth are:

- image resolution
- image compression
- frame rate
- MPEG-4 GOV settings
- bit rate control settings

There are also factors in the monitored scene that will affect the bandwidth. These are:

- amount of motion
- image complexity
- lighting conditions

For MPEG-4, if there is only limited bandwidth available, and if this is more important
than the image quality, using a constant bit rate (CBR) is recommended. Use a variable bit
rate (VBR) if the image quality needs to be maintained at a higher level. If supported on the
network, consider also using MPEG-4 multicasting, as the bandwidth consumption will be
much lower.
Glossary of Terms

ActiveX - A standard that enables software components to interact with one another in a networked environment, regardless of the language(s) used to create them. Web browsers may come into contact with ActiveX controls, ActiveX documents, and ActiveX scripts. ActiveX controls are often downloaded and installed automatically as required.

Angle - The field of view, relative to a standard lens in a 35mm still camera, expressed in degrees, e.g. 30°. For practical purposes, this is the area that a lens can cover, where the angle of view is determined by the focal length of the lens. A wide-angle lens has a short focal length and covers a wider angle of view than standard or telephoto lenses, which have longer focal lengths.

ARP (Address Resolution Protocol) - This protocol is used to associate an IP address to a hardware MAC address. A request is broadcast on the local network to discover the MAC address for an IP address.

ARTPEC (Axis Real Time Picture Encoder) - This chip is used for image compression.

ASIC (Application Specific Integrated Circuit) - A circuit designed for a specific application, as opposed to a general purpose circuit, such as a microprocessor.

Aspect ratio - A ratio of width to height in images. A common aspect ratio used for television screens and computer monitors is 4:3. High-definition television (HDTV) uses an aspect ratio of 9:16.

Autoiris (or DC-Iris) - This special type of iris is electrically controlled by the camera, to automatically regulate the amount of light allowed to enter.

Bitmap - A bitmap is a data file representing a rectangular grid of pixels. It defines a display space and color for each pixel (or "bit") in the display space. This type of image is known as a "raster graphic." GIFs and JPEGs are examples of image file types that contain bitmaps.

Because a bitmap uses a fixed raster method, it cannot easily be rescaled without losing definition. Conversely, a vector graphic image uses geometrical shapes to represent the image, and can thus be quickly rescaled.

Bit rate - The bit rate (in kbit/s or Mbit/s) is often referred to as speed, but actually defines the number of bits/time unit and not distance/time unit.

Bonjour - Also known as zero-configuration networking, Bonjour enables devices to automatically discover each other on a network, without having to enter IP addresses or configure DNS servers. Bonjour is a trademark of Apple Computer, Inc.

Broadband - In network engineering terms, this describes transmission methods where two or more signals share the same carrier. In more popular terminology, broadband is taken to mean high-speed data transmission.

CCD (Charged Coupled Device) - This light-sensitive image device used in many digital cameras is a large integrated circuit that contains hundreds of thousands of photo-sites (pixels) that convert light energy into electronic signals. Its size is measured diagonally and can be 1/4", 1/3", 1/2" or 2/3".

CGI (Common Gateway Interface) - A specification for communication between a web server and other (CGI) programs. For example, a HTML page that contains a form might use a CGI program to process the form data once it is submitted.

CIF (Common Intermediate Format) - CIF refers to the analog video resolutions 352x288 pixels (PAL) and 352x240 pixels (NTSC). See also Resolution.

Client/Server - Client/server describes the relationship between two computer programs in which one program, the client, makes a service request from another program, the server, which fulfills the request. Typically, multiple client programs share the services of a common server program. A web browser is a client program that requests services [the sending of web pages or files] from a web server.

CMOS (Complementary Metal Oxide Semiconductor) - A CMOS is a widely used type of semiconductor that uses both negative and positive circuits. Since only one of the circuit types is on at any given time, CMOS chips require less power than chips using just one type of transistor. CMOS image sensors also allow processing circuits to be included on the same chip, an advantage not possible with CCD sensors, which are also much more expensive to produce.

Codec - In communications engineering, a codec is usually a coder/decoder. Coders are used in integrated circuits or chips that convert e.g. analog video and audio signals into a digital format for transmission. The codec also converts received digital signals back into analog format. A codec uses analog-to-digital conversion and digital-to-analog conversion in the same chip.

Codec can also mean compression/decompression, in which case it is generally taken to mean an algorithm or computer program for reducing the size of large files and programs.

Compression - See Image compression.

DC-Iris - This special type of iris is electrically controlled by the camera, to automatically regulate the amount of light allowed to enter.

DHCP (Dynamic Host Configuration Protocol) - DHCP is a protocol that lets network administrators automate and centrally manage the assignment of Internet Protocol (IP) addresses to network devices in a network.

DHCP uses the concept of a "lease" or amount of time that a given IP address will be valid for a computer. The lease time can vary, depending on how long a user is likely to require the network connection at a particular location.
DHCP also supports static addresses for e.g. computers running web servers, which need a permanent IP address.

DNS (Domain Name System) – DNS is used to locate and translate Internet domain names into IP (Internet Protocol) addresses. A domain name is a meaningful and easy-to-remember name for an Internet address. For example the domain name www.example.com is much easier to remember than 192.0.34.166. The translation tables for domain names are contained in Domain name servers.

Domain Server – Domains can also be used by organizations who wish to centralize the management of their (Windows) computers. Each user within a domain has an account that usually allows them to log in to and use any computer in the domain, although restrictions may also apply. The domain server is the server that authenticates the users on the network.

Duplex - See Full-duplex.

Ethernet – Ethernet is the most widely installed local area network technology. An Ethernet LAN typically uses special grades of twisted pair wires. The most commonly installed Ethernet systems are 10BASE-T and 100BASE-T10, which provide transmission speeds up to 10 Mbps and 100 Mbps respectively.

ETRAX (Ethernet Token Ring AXIS) - Axis' own microprocessor.

Factory default settings – These are the settings that originally applied for a device when it was first delivered from the factory. If it should become necessary to reset a device to its factory default settings, this will, for many devices, completely reset any settings that were changed by the user.

Firewall - A firewall works as a barrier between networks, e.g. between a Local Area Network and the Internet. The firewall ensures that only authorized users are allowed to access the one network from the other. A firewall can be software running on a computer, or it can be a standalone hardware device.

Focal length – Measured in millimeters, the focal length of a camera lens determines the width of the horizontal field of view, which in turn is measured in degrees.

FTP (File Transfer Protocol) - An application protocol that uses the TCP/IP protocols. It is used to exchange files between computers/devices on networks.

Frame – A frame is a complete video image. In the 2:1 interlaced scanning format of the RS-170 and CCIR formats, a frame is made up of two separate fields of 262.5 or 312.5 lines interlaced at 60 or 50 Hz to form a complete frame, which appears at 30 or 25 Hz. In video cameras with a progressive scan, each frame is scanned line-by-line and not interlaced; most are also displayed at 30 and 25 Hz.

Frame rate – The frame rate used to describe the frequency at which a video stream is updated is measured in frames per second (fps). A higher frame rate is advantageous when there is movement in the video stream, as it maintains image quality throughout.

Full-duplex – Transmission of data in two directions simultaneously. In an audio system this would describe e.g. a telephone systems. Half-duplex also provides bi-directional communication, but only in one direction at a time, as in a walkie-talkie system. See also Simplex.

Gain – Gain is the amplification factor and the extent to which an analog amplifier boosts the strength of a signal. Amplification factors are usually expressed in terms of power. The decibel (dB) is the most common way of quantifying the gain of an amplifier.

Gateway – A gateway is a point in a network that acts as an entry point to another network. In a corporate network for example, a computer server acting as a gateway often also acts as a proxy server and a firewall server. A gateway is often associated with both a router, which knows where to direct a given packet of data that arrives at the gateway, and a switch, which furnishes the actual path in and out of the gateway for a given packet.

GIF (Graphics Interchange Format) - GIF is one of the most common file formats used for images in web pages. There are two versions of the format, 87a and 89a. Version 89a supports animations, i.e. a short sequence of images within a single GIF file. A GIF89a can also be specified for interlaced presentation.

GOV (Group Of VOPs) – A group of VOPs is the basic unit of an MPEG-4 video stream. The GOV contains different types and numbers of VOPs (I-VOPs, P-VOPs) as determined by the GOV length and GOV structure. See also VOP.

GOV length – The GOV length determines the number of images (VOPs) in the GOV structure. See also GOV and VOP.

GOV structure – The GOV structure describes the composition of an MPEG-4 video stream, as regards the type of images (I-VOPs or P-VOPs) included in the stream, and their internal order. See also GOV and VOP.

Half-duplex – See Full-duplex.

HTML (Hypertext Markup Language) - HTML is the set of “markup” symbols or codes inserted in a file intended for display in browser. The markup tells the browser how to display the page’s words and images for the user.

HTTP (Hypertext Transfer Protocol) - HTTP is the set of rules for exchanging files (text, graphic images, sound, video, and other multimedia files) on the web. The HTTP protocol runs on the top of the TCP/IP suite of protocols.

Hub – A (network) hub is used to connect multiple devices to the network. The hub transmits all data to all devices connected to it, whereas a switch will only transmit the data to the device it is specifically intended for.

IEEE 802.11 – A family of standards for wireless LANs. The 802.11 standard supports 1 or 2 Mbit/s transmission on the 2.4 GHz band. IEEE 802.11b specifies an 11 Mbit/s data rate.
on the 2.4 GHz band, while 802.11a allows up to 54 Mbit/s on the 5 GHz band.

**Image compression** - Image compression minimizes the file size (in bytes) of an image. Two of the most common compressed image formats are JPEG and GIF.

**Interfacing** - Interlaced video is video captured at 50 pictures (known as fields) per second, of which every 2 consecutive fields (at half height) are then combined into 1 frame. Interlacing was developed many years ago for the analog TV world and is still used widely today. It provides good results when viewing motion in standard TV pictures, although there is always some degree of distortion in the image.

To view interlaced video on e.g. a computer monitor, the video must first be de-interlaced, to produce progressive video, which consists of complete images, one after the other, at 25 frames per second. See also **Progressive scan**.

**IP (Internet Protocol)** - The Internet Protocol is a method transmitting data over a network. Data to be sent is divided into individual and completely independent “packets.” Each computer (or host) on the Internet has at least one address that uniquely identifies it from all others, and each data packet contains both the sender’s address and the receiver’s address.

The Internet Protocol ensures that the data packets all arrive at the intended address. As IP is a connectionless protocol, which means that there is no established connection between the communication end-points, packets can be sent via different routes and do not need to arrive at the destination in the correct order.

Once the data packets have arrived at the correct destination, another protocol - Transmission Control Protocol (TCP) - puts them in the right order. See also **TCP**.

**IP Address** - An IP address is simply an address on an IP network used by a computer/device connected to that network. IP addresses allow all the connected computers/devices to find each other and to pass data back and forth.

To avoid conflicts, each IP address on any given network must be unique. An IP address can be assigned as fixed, so that it does not change, or it can be assigned dynamically (and automatically) by DHCP.

An IP address consists of four groups (or quads) of decimal digits separated by periods, e.g. 130.5.5.25. Different parts of the address represent different things. Some part will represent the network number or address, and some other part will represent the local machine address.

See also **IP (Internet Protocol)**.

**I-VOP** - See **VOP**.

**JPEG (Joint Photographic Experts Group)** - Together with the GIF file format, JPEG is an image file type commonly used on the web. A JPEG image is a bitmap, and usually has the file suffix `.jpg` or `.jpeg`. When creating a JPEG image, it is possible to configure the level of compression to use. As the lowest compression (i.e. the highest quality) results in the largest file, there is a trade-off between image quality and file size.

**kbit/s (kilobits per second)** - A measure of the bit rate, i.e. the rate at which bits are passing a given point. See also **Bit rate**.

**LAN (Local Area Network)** - A LAN is a group of computers and associated devices that typically share common resources within a limited geographical area.

**Linux** - Linux is an open source operating system within the UNIX family. Because of its robustness and availability, Linux has won popularity in the open source community and among commercial application developers.

**MAC address (Media Access Control address)** - A MAC address is a unique identifier associated with a piece of networking equipment, or more specifically, its interface with the network. For example, the network card in a computer has its own MAC address.

**Manual iris** - This is the opposite to an autoiris, i.e. the camera iris must be adjusted manually to regulate the amount of light allowed to reach the image sensor.

**Mbit/s (Megabits per second)** - A measure of the bit rate, i.e. the rate at which bits are passing a given point. Commonly used to give the “speed” of a network. A LAN might run at 10 or 100 Mbit/s. See also **Bit rate**.

**Monitor** - A monitor is very similar to a standard television set, but lacks the electronics to pick up regular television signals.

**Motion JPEG** - Motion JPEG is a simple compression/decompression technique for networked video. Latency is low and image quality is guaranteed, regardless of movement or complexity of the image. Image quality is controlled by adjusting the compression level, which in turn provides control over the file size, and thereby the bit rate. High-quality individual images from the Motion JPEG stream are easily extracted. See also **JPEG**.

**Megapixel** - See **Pixel**.

**MPEG (Moving Picture Experts Group)** - The Moving Picture Experts Group develops standards for digital video and audio compression. It operates under the auspices of the International Organization for Standardization (ISO). The MPEG standards are an evolving series, each designed for a different purpose.

**MPEG-2** - MPEG-2 is the designation for a group of audio and video coding standards, and is typically used to encode audio and video for broadcast signals, including digital satellite and Cable TV. MPEG-2, with some modifications, is also the coding format used by standard commercial DVD movies.

**MPEG-4** - MPEG-4 is a group of audio and video coding
standards and related technology. The primary uses for the MPEG-4 standard are web (streaming media) and CD distribution, conversational (videophone), and broadcast television.

Most of the features included in MPEG-4 are left to individual developers to decide whether to implement them or not. This means that there are probably no complete implementations of the entire MPEG-4 set of standards. To deal with this, the standard includes the concept of "profiles" and "levels," allowing a specific set of capabilities to be defined in a manner appropriate for a subset of applications.

Multicast - Bandwidth-conserving technology that reduces bandwidth usage by simultaneously delivering a single stream of information to multiple network recipients.

Network connectivity - The physical (wired or wireless) and logical (protocol) connection of a computer network or an individual device to a network, such as the Internet or a LAN.

NTSC (National Television System Committee) - NTSC is the television and video standard in the United States. NTSC delivers 525 lines at 60 half-frames/second.

PAL (Phase Alternating Line) - PAL is the dominant television standard in Europe. PAL delivers 625 lines at 50 half-frames/second.

Ping - Ping is a basic network program used diagnostically to check the status of a network host or device. Ping can be used to see if a particular network address (IP address or host name) is occupied or not, or if the host at that address is responding normally. Ping can be run from e.g. the Windows Command prompt or the command line in UNIX.

Pixel - A pixel is one of the many tiny dots that make up a digital image. The color and intensity of each pixel represents a tiny area of the complete image.

PoE (Power over Ethernet) - Power over Ethernet provides power to a network device via the same cable as used for the network connection. This is very useful for IP-Surveillance and remote monitoring applications in places where it may not be possible to run separate power cables. PoE can be used to power devices such as cameras, access points, and other network devices.

Progressive scan - Progressive scan, as opposed to interlaced video, scans the entire picture, line by line every sixteenth of a second. In other words, captured images are not split into separate fields as in interlaced scanning.

Computer monitors do not need interface to show the picture on the screen, but instead show them progressively, on one line at a time in perfect order, i.e. 1, 2, 3, 4, 5, 6, 7 etc., so there is virtually no "flickering" effect. In a surveillance application, this can be critical when viewing detail within a moving image, such as a person running. A high-quality monitor is required to get the best from progressive scan. See also Interlacing.

Proxy server - In an organization that uses the Internet, a proxy server acts as an intermediary between a workstation user and the Internet. This provides security, administrative control, and a caching service. Any proxy server associated with a gateway server, or part of a gateway server, effectively separates the organization's network from the outside network and the local firewall. It is the firewall server that protects the network against outside intrusion.

A proxy server receives requests for Internet services (such as web page requests) from many users. If the proxy server is also a cache server, it looks in its local cache of previously downloaded web pages. If it finds the page, it is returned to the user without forwarding the request to the Internet. If the page is not in the cache, the proxy server, acting as a client on behalf of the user, uses one of its own IP addresses to request the page from another server over the Internet. When the requested page is returned, the proxy server forwards it to the user that originally requested it.

Resolution - Image resolution is a measure of how much detail a digital image can hold: the greater the resolution, the greater the level of detail. Resolution can be specified as the number of pixel-columns (width) by the number of pixel-rows (height), e.g. 320x240.

Alternatively, the total number of pixels (usually in megapixels) in the image can be used. In analog systems it is also common to use other format designations, such as CIF, QCIF, 4CIF, etc.

RTCP (Real-Time Control Protocol) - RTCP provides support for real-time conferencing of groups of any size within an intranet. This support includes source identification and support for gateways like audio and video bridges as well as multicast-to-unicast translators. RTCP offers quality-of-service feedback from receivers to the multicast group as well as support for the synchronization of different media streams.
RTP (Real-Time Transport Protocol) - RTP is an Internet protocol for the transport of real-time data, e.g. audio and video. It can be used for media-on-demand as well as interactive services such as Internet telephony.

RTSP (Real Time Streaming Protocol) - RTSP is a control protocol, and a starting point for negotiating transports such as RTP, multicast and Unicast, and for negotiating codecs.

RTSP can be considered a "remote control" for controlling the media stream delivered by a media server. RTSP servers typically use RTP as the protocol for the actual transport of audio/video data.

Router - A device that determines the next network point to which a packet should be forwarded on its way to its final destination. A router creates and/or maintains a special routing table that stores information on how best to reach certain destinations. A router is sometimes included as part of a network switch. See also switch.

Server - In general, a server is a computer program that provides services to other computer programs in the same or other computers. A computer running a server program is also frequently referred to as a server. In practice, the server may contain any number of server and client programs. A web server is the computer program that supplies the requested HTML pages or files to the client (browser).

Sharpness - This is the control of fine detail within a picture. This feature was originally introduced into color TV sets that used notch filter decoders. This filter took away all high frequency detail in the black and white region of the sets that used notch filter decoders. This filter took away all high frequency detail in the black and white region of the sets that used notch filter decoders. The sharpness control attempted to put some of that detail back in the picture. Sharpness controls are mostly superfluous in today's high-end TVs. The only logical requirement for it nowadays is on a VHS machine.

Simplex - In Simplex operation, a network cable or communications channel can only send information in one direction.

SMTP (Simple Mail Transfer Protocol) - SMTP is used for sending and receiving e-mail. However, as it is "simple," it is limited in its ability to queue messages at the receiving end, and is usually used with one of two other protocols, POP3 or IMAP. These other protocols allow the user to save messages in a server mailbox and download them periodically from the server.

SMTP authentication is an extension of SMTP, whereby the client is required to log into the mail server before or during the sending of email. It can be used to allow legitimate users to send email while denying the service to unauthorized users, such as spammers.

SNMP (Simple Network Management Protocol) - SNMP forms part of the Internet Protocol suite, as defined by the Internet Engineering Task Force. The protocol can support monitoring of network-attached devices for any conditions that warrant administrative attention.

Sockets - Sockets are a method for communication between a client program and a server program over a network. A socket is defined as "the endpoint in a connection." Sockets are created and used with a set of programming requests or "function calls" sometimes called the sockets application programming interface (API).

SSL/TSL (Secure Socket Layer/Transport Layer Security) These two protocols (SSL is succeeded by TSL) are cryptographic protocols that provide secure communication on a network. SSL is commonly used over HTTP to form HTTPS, as used e.g. on the Internet for electronic financial transactions. SSL uses public key certificates to verify the identity of the server.

Subnet/subnet mask - A subnet is an identifiable separate part of an organization's network. Typically, a subnet may represent all the machines at one geographic location, in one building, or on the same local area network (LAN). Having an organization's network divided into subnets allows it to be connected to the Internet with a single shared network address.

The subnet mask is the part of the IP address that tells a network router how to find the subnet that the data packet should be delivered to. Using a subnet mask saves the router having to handle the entire 32-bit IP address; it simply looks at the bits selected by the mask.

Switch - A switch is a network device that connects network segments together, and which selects a path for sending a unit of data to its next destination. In general, a switch is a simpler and faster mechanism than a router, which requires knowledge about the network and how to determine the route. Some switches include the router function. See also Router.

TCP (Transmission Control Protocol) - TCP is used along with the Internet Protocol (IP) to transmit data as packets between computers over the network. While IP takes care of the actual packet delivery, TCP keeps track of the individual packets that the communication (e.g. requested a web page file) is divided into, and, when all packets have arrived at their destination, it reassembles them to re-form the complete file.

TCP is a connection-oriented protocol, which means that a connection is established between the two end-points and is maintained until the data has been successfully exchanged between the communicating applications.

Telnet - Telnet is a simple method with which to access another network device, e.g. a computer. The HTTP protocol and the FTP protocols allow you to request specific files from remote computers, but do not allow you logon as a user of that computer. With Telnet, you log on as a regular user with whatever privileges you may have been granted for specific applications and data residing on that computer.

UDP (User Datagram Protocol) - UDP is a communications protocol that offers limited service for exchanging data in a
network that uses the Internet Protocol (IP). UDP is an alternative to the Transmission Control Protocol (TCP). The advantage of UDP is that it is not required to deliver all data and may drop network packets when there is e.g. network congestion. This is suitable for live video, as there is no point in re-transmitting old information that will not be displayed anyway.

Unicast - Communication between a single sender and a single receiver over a network. A new connection is established for each new user.

URL (Uniform Resource Locator) - An "address" on the network.

Varifocal lens - A varifocal lens provides a wide range of focal lengths, as opposed to a lens with a fixed focal length, which only provides one.

VPN (Virtual Private Network) - This creates a secure "tunnel" between the points within the VPN. Only devices with the correct "key" will be able to work within the VPN. The VPN network can be within a company LAN (Local Area Network), but different sites can also be connected over the Internet in a secure way. One common use for VPN is for connecting a remote computer to the corporate network, via e.g. a direct phone line or via the Internet.

VOP (Video Object Plane) - A VOP is an image frame in an MPEG-4 video stream. There are several types of VOP:
- An I-VOP is complete image frame.
- A P-VOP codes the differences between images, as long as it is more efficient to do so. Otherwise it codes the whole image, which may also be a completely new image.

WAN (Wide-Area-Network) - Similar to a LAN, but on a larger geographical scale.

W-LAN (Wireless LAN) - A wireless LAN is a wireless local area network that uses radio waves as its carrier: where the network connections for end-users are wireless. The main network structure usually uses cables.

Web server - A web server is a program, which allows web browsers to retrieve files from computers connected to the Internet. The web server listens for requests from web browsers and upon receiving a request for a file sends it back to the browser.

The primary function of a web server is to serve pages to other remote computers; consequently, it needs to be installed on a computer that is permanently connected to the Internet. It also controls access to the server whilst monitoring and logging server access statistics.

WEP (Wireless Equivalent Privacy) - A wireless security protocol, specified in the IEEE 802.11 standard, which is designed to provide a wireless local area network (WLAN) with a level of security and privacy comparable to that usually expected of a wired LAN. Security is at two different levels: 40-bit and 128-bit encryption. The higher the bit number, the more secure the encryption.

WPA-PSK (Wi-Fi Protected Access - Pre-Shared Key) - This wireless encryption method uses a pre-shared key (PSK) for key management. Keys can usually be entered as manual hex values, as hexadecimal characters, or as a Passphrase. WPA-PSK provides a greater degree of security than WEP.

Zoom lens - A zoom lens can be moved (zoomed) to enlarge the view of an object to show more detail.
Index

A
Action 29
Action Buttons 12, 26
Active/Inactive 27
Administrator 17
Alarm 33, 47
AMC 8
AMC Viewer Toolbar 12
ARP/Ping 39
Audio 6, 13, 21
Audio input 23
Audio output 23
Auxiliary Power 47
AXIS Media Control 22

B
Backup 44
Bit Rate 20
Bonjour 8
Buffer Size 31
Buffers 31

C
Control Button 7, 46
Customize 25

D
Date & Time 38
Default Viewer 25
DNS Configuration 39
DNS Server 39, 40
Domain Name 40

E
Emergency Recovery 50
Enable ARP/Ping 39
Event Servers 29
Events 29

F
Factory Default Settings 46
Frame Rate 18
FTP Server 29

G
GOV Settings 20

H
Half duplex 22
Host Name 40
HTML Examples 28
HTTP Server 29
HTTPS 36

I
I/O Ports 43
I/O Terminal Block 6, 47
Input 47
IP Address Filtering 35

L
Live View 12
Live View Config 24
Logs & Reports 44

M
Motion Detection 33, 47
MPEG-4 Settings 20

N
NAT traversal 11, 40, 41
Network Connector 6
Network Settings 38
Notification of IP address change 39
NTP Server 38

O
Output 47
Output Buttons 27
Own Home Page 25
Own Web Files 25
P
Partial scan 17, 57
Port Status 34
Ports & Devices 43
Post-trigger Buffer 31
Power Connector 6
Pre-trigger Buffer 31
Pulse 12, 27

Q
QuickTime 15, 26

R
Real Player 16
Recovery 50
Referrals 35
Restore 44

S
Scheduled Event 29, 31
Security 35
Server Time 38

Services 39
Snapshot button 12
SNMP 43
Support 44
System Options 35

T
TCP Server 29
TCP/IP Settings 38
Terminal Block 47
Time Mode 38
Triggered Event 29
Troubleshooting 49

U
Upgrade Server 44
Uploading web files 25
UPnP 40, 43
Users 35

V
Video Stream 18